PHẦN GIẢI TÍCH - TOÁN 12

Câu 5 trang 146 SGK Giải tích 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hàm số: \(y = {x^4} + a{x^2} + b.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

a) Tính \(a,\, b\) để hàm số có cực trị bằng \(\displaystyle{3 \over 2}\) khi \(x = 1.\)

Phương pháp giải:

Hàm số \(y=f(x)\) đạt cực trị tại điểm \(x=x_0 \Leftrightarrow x_0\) là nghiệm của của phương trình \(y'=0.\)

+) Điểm cực trị thuộc đồ thị hàm số nên tọa độ của điểm đó thỏa mãn công thức hàm số. 

+) Từ hai điều trên ta có hệ phương trình hai ẩn \(a, \, b.\) Giải hệ phương trình ta tìm được \(a, \, b.\)

Lời giải chi tiết:

Ta có: \(y' = 4{x^3} + 2ax.\)

a) Nếu hàm số có cực trị bằng \(\displaystyle{3 \over 2}\) khi \(x = 1\) thì: ta có đồ thị hàm số đi qua điểm có tọa độ \(\left( {1;\;\dfrac{3}{2}} \right)\) và có \(y'\left( 1 \right) = 0\)

\( \Leftrightarrow \left\{ \matrix{
y'(1) = 0 \hfill \cr 
y(1) = {3 \over 2} \hfill \cr} \right.\) \( \Leftrightarrow \left\{ \matrix{
4 + 2a = 0 \hfill \cr 
1 + a + b = {3 \over 2} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
a = - 2 \hfill \cr 
b = {5 \over 2} \hfill \cr} \right.\)

LG b

b) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số đã cho khi \(\displaystyle a = {{ - 1} \over 2}, \, \,b = 1.\)

Phương pháp giải:

Với các giá trị cho trước của \(a\) và \(b\) ta thay vào hàm số và khảo sát, vẽ đồ thị hàm số theo các bước đã học.

Lời giải chi tiết:

Khi \(\displaystyle a = {{ - 1} \over 2},b = 1\) ta có hàm số: \(\displaystyle y = {x^4} - {1 \over 2}{x^2} + 1\)

- Tập xác định: \((-∞; +∞).\)

- Sự biến thiên: \(y' = 4{x^3} - x = x\left( {4{x^2} - 1} \right).\)

\(\begin{array}{l}
\Rightarrow y' = 0 \Leftrightarrow x\left( {4{x^2} - 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 0\\
4{x^2} - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x = \pm \dfrac{1}{2}
\end{array} \right..
\end{array}\)

Trên các khoảng \(\displaystyle ({{ - 1} \over 2};0)\) và \(\displaystyle ({1 \over 2}\; + \infty )\) có \( y’ > 0\) nên hàm số đồng biến.

Trên các khoảng \(\displaystyle ( - \infty ; {{ - 1} \over 2}) \) và \( \displaystyle (0;{1 \over 2})\) có \( y’ < 0\) nên hàm số nghịch biến.

- Cực trị: Hàm số đạt cực đại tại \(x = 0;\;\;{y_{CD}} = 1.\)

Hàm số đạt cực tiểu tại \(\displaystyle x =  \pm {1 \over 2}; \,{y_{CT}} = {{15} \over {16}}.\)

Bảng biến thiên:

Đồ thị hàm số:

Đồ thị cắt trục tung tại điểm \(y = 1\), không cắt trục hoành.

LG c

c) Viết phương trình tiếp tuyến của \((C)\) tại các điểm có tung độ bằng \(1.\)

Phương pháp giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại điểm \(x=x_0\) có công thức: \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}.\)

Lời giải chi tiết:

Với \(y = 1\) ta có phương trình:

 \(\displaystyle {x^4} - {1 \over 2}{x^2} = 0 \Leftrightarrow x \in \left\{ {0, \pm {1 \over {\sqrt 2 }}} \right\}\)

Trên đồ thị có 3 điểm với tung độ bằng 1 là:

\(\displaystyle {M_1}({{ - 1} \over {\sqrt 2 }}; \, 1);{M_2}(0; \, 1);{M_3}({1 \over {\sqrt 2 }}; \, 1)\)

Ta có \(y’(0) = 0\) nên tiếp tuyến với đồ thị tại điểm \(M_2\) có phương trình là \(y = 1.\)

Lại có:

\(\displaystyle y'({1 \over {\sqrt 2 }}) = {1 \over {\sqrt 2 }};y'({-1 \over {\sqrt 2 }}) = {{ - 1} \over {\sqrt 2 }}.\)

Tiếp tuyến của đồ thị hàm số tại điểm \({M_1}\left( { - \dfrac{1}{{\sqrt 2 }};\;1} \right)\) là: \(y =  - \dfrac{1}{{\sqrt 2 }}\left( {x + \dfrac{1}{{\sqrt 2 }}} \right) + 1 =  - \dfrac{1}{{\sqrt 2 }}x + \dfrac{1}{2}.\)

Tiếp tuyến của đồ thị hàm số tại điểm \({M_2}\left( {  \dfrac{1}{{\sqrt 2 }};\;1} \right)\) là: \(y = \dfrac{1}{{\sqrt 2 }}\left( {x - \dfrac{1}{{\sqrt 2 }}} \right) + 1 = \dfrac{1}{{\sqrt 2 }}x + \dfrac{1}{2}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved