PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 2 trang 7 SGK Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

Với mỗi phương trình sau, tìm nghiệm tổng quát của phương trình và vẽ đường thẳng biểu diễn tập nghiệm của nó:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

LG a

LG a

\(3x - y = 2\)

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu \(a \ne 0 \) thì tìm \(x\) theo \(y\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
x = \dfrac{c - by}{a} \hfill \cr 
y \in \mathbb{R} \hfill \cr} \right.\)

+) Nếu \(b \ne 0 \) thì tìm \(y\) theo \(x\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
y = \dfrac{c - ax}{b} \hfill \cr 
x \in \mathbb{R} \hfill \cr} \right.\)

2) Cách vẽ đường thẳng có phương trình: \(ax+by=c\).

+) Nếu \(a \ne 0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{-a}{b}x+\dfrac{c}{b}\)

+) Nếu \(a \ne 0,\ b=0\) thì vẽ đường thẳng \(x=\dfrac{c}{a}\) song song hoặc trùng với trục tung.

+) Nếu \(a =0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{c}{a}\) song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình \(3x - y = 2 \Leftrightarrow y=3x -2\). Nghiệm tổng quát của phương trình là:   

\(\left\{\begin{matrix} x \in R & & \\ y = 3x - 2 & & \end{matrix}\right.\)

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(y = 3x - 2\) :

Cho \(x = 0 \Rightarrow y =  - 2\) ta được \(A(0; -2)\).

Cho \(y = 0 \Rightarrow x = \dfrac{2}{3}\) ta được \(B {\left(\dfrac{2}{3}; 0 \right)}\).

Biểu diễn cặp điểm \(A(0; -2)\) và \(B{\left(\dfrac{2}{3}; 0 \right)}\) trên hệ trục tọa độ và đường thẳng \(AB\) chính là tập nghiệm của phương trình \(3x - y = 2\).

LG b

LG b

\( x + 5y = 3\)

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu \(a \ne 0 \) thì tìm \(x\) theo \(y\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
x = \dfrac{c - by}{a} \hfill \cr 
y \in \mathbb{R} \hfill \cr} \right.\)

+) Nếu \(b \ne 0 \) thì tìm \(y\) theo \(x\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
y = \dfrac{c - ax}{b} \hfill \cr 
x \in \mathbb{R} \hfill \cr} \right.\)

2) Cách vẽ đường thẳng có phuương trình: \(ax+by=c\).

+) Nếu \(a \ne 0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{-a}{b}x+\dfrac{c}{b}\)

+) Nếu \(a \ne 0,\ b=0\) thì vẽ đường thẳng \(x=\dfrac{c}{a}\) song song hoặc trùng với trục tung.

+) Nếu \(a =0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{c}{a}\) song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình \(x + 5y = 3 \Leftrightarrow x=-5y+3\). Nghiệm tổng quát của phương trình là:

\(\left\{\begin{matrix} x = -5y + 3 & & \\ y \in R & & \end{matrix}\right.\) 

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(x=-5y+3\) :

+) Cho  \(x = 0 \Rightarrow y = \dfrac{3}{5}\) ta được \(C {\left( 0; \dfrac{3}{5} \right)}\).

+) Cho \(y = 0 \Rightarrow x = 3\) ta được \(D\left( {3;0} \right)\).

Biểu diễn cặp điểm \(C {\left( 0; \dfrac{3}{5} \right)}\), \(D\left( {3;0} \right)\) trên hệ trục toa độ và đường thẳng \(CD\) chính là tập nghiệm của phương trình.

LG c

LG c

\(4x - 3y = -1\)

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu \(a \ne 0 \) thì tìm \(x\) theo \(y\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
x = \dfrac{c - by}{a} \hfill \cr 
y \in \mathbb{R} \hfill \cr} \right.\)

+) Nếu \(b \ne 0 \) thì tìm \(y\) theo \(x\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
y = \dfrac{c - ax}{b} \hfill \cr 
x \in \mathbb{R} \hfill \cr} \right.\)

2) Cách vẽ đường thẳng có phuương trình: \(ax+by=c\).

+) Nếu \(a \ne 0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{-a}{b}x+\dfrac{c}{b}\)

+) Nếu \(a \ne 0,\ b=0\) thì vẽ đường thẳng \(x=\dfrac{c}{a}\) song song hoặc trùng với trục tung.

+) Nếu \(a =0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{c}{a}\) song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình \(4x - 3y = -1 \Leftrightarrow 3y=4x+1 \Leftrightarrow y=\dfrac{4}{3}x+\dfrac{1}{3}\). Nghiệm tổng quát của phương trình là:

\(\left\{\begin{matrix} x \in R & & \\ y = \dfrac{4}{3}x + \dfrac{1}{3}& & \end{matrix}\right.\)

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(4x-3y=-1\)

+) Cho \(x = 0 \Rightarrow y = \dfrac{1}{3}\) ta được \(A {\left(0;\dfrac{1}{3} \right)}\)

+) Cho \(y = 0 \Rightarrow x = -\dfrac{1}{4}\) ta được \(B {\left(-\dfrac{1}{4};0 \right)}\)

Biểu diễn cặp điểm \(A {\left(0; \dfrac{1}{3} \right)}\) và \(B {\left(-\dfrac{1}{4}; 0 \right)}\) trên hệ tọa độ và đường thẳng \(AB\) chính là tập nghiệm của phương trình \(4x-3y=-1\).

 

LG d

LG d

\(x  +5y = 0\)

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu \(a \ne 0 \) thì tìm \(x\) theo \(y\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
x = \dfrac{c - by}{a} \hfill \cr 
y \in \mathbb{R} \hfill \cr} \right.\)

+) Nếu \(b \ne 0 \) thì tìm \(y\) theo \(x\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
y = \dfrac{c - ax}{b} \hfill \cr 
x \in \mathbb{R} \hfill \cr} \right.\)

2) Cách vẽ đường thẳng có phuương trình: \(ax+by=c\).

+) Nếu \(a \ne 0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{-a}{b}x+\dfrac{c}{b}\)

+) Nếu \(a \ne 0,\ b=0\) thì vẽ đường thẳng \(x=\dfrac{c}{a}\) song song hoặc trùng với trục tung.

+) Nếu \(a =0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{c}{a}\) song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình \(x + 5y = 0 \Leftrightarrow x=-5y\). Nghiệm tổng quát của phương trình là:

\(\left\{\begin{matrix} x = -5y & & \\ y \in R & & \end{matrix}\right.\)

* Vẽ đường thẳng biểu diễn tập nghiệm của phương trình \(x+5y=0\)

+) Cho \(x = 0 \Rightarrow y = 0\) ta được \(O\left( {0;0} \right)\)

+) Cho \(y = 1 \Rightarrow x = -5\) ta được \(A\left( {-5;1}\right)\).

Biểu diễn cặp điểm \(O (0; 0)\) và \(A (-5; 1)\) trên hệ tọa độ và đường thẳng OA chính là tập nghiệm của phương trình \(x+5y=0\).

 

LG e

LG e

\(4x + 0y = -2\)

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu \(a \ne 0 \) thì tìm \(x\) theo \(y\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
x = \dfrac{c - by}{a} \hfill \cr 
y \in \mathbb{R} \hfill \cr} \right.\)

+) Nếu \(b \ne 0 \) thì tìm \(y\) theo \(x\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
y = \dfrac{c - ax}{b} \hfill \cr 
x \in \mathbb{R} \hfill \cr} \right.\)

2) Cách vẽ đường thẳng có phuương trình: \(ax+by=c\).

+) Nếu \(a \ne 0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{-a}{b}x+\dfrac{c}{b}\)

+) Nếu \(a \ne 0,\ b=0\) thì vẽ đường thẳng \(x=\dfrac{c}{a}\) song song hoặc trùng với trục tung.

+) Nếu \(a =0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{c}{a}\) song song hoặc trùng với trục hoành.

Lời giải chi tiết:

Ta có phương trình \(4x + 0y = -2 \Leftrightarrow 4x=-2 \Leftrightarrow x=\dfrac{-1}{2}\). Nghiệm tổng quát của phương trình là:

\(\left\{\begin{matrix} x = -\dfrac{1}{2} & & \\ y \in R & & \end{matrix}\right.\)

Tập nghiệm là đường thẳng \(x = -\dfrac{1}{2}\) đi qua \(A {\left(-\dfrac{1}{2}; 0 \right)} \) và song song với trục tung.

LG f

LG f

\(0x + 2y = 5\)

Phương pháp giải:

1) Tìm nghiệm tổng quát của phương trình:

+) Nếu \(a \ne 0 \) thì tìm \(x\) theo \(y\). Khi đó công thức nghiệm là:

\(\left\{ \matrix{
x = \dfrac{c - by}{a} \hfill \cr 
y \in \mathbb{R} \hfill \cr} \right.\)

+) Nếu \(b \ne 0 \) thì tìm \(y\) theo \(x\). Khi đó công thức nghiệm là: 

\(\left\{ \matrix{
y = \dfrac{c - ax}{b} \hfill \cr 
x \in \mathbb{R} \hfill \cr} \right.\)

2) Cách vẽ đường thẳng có phuương trình: \(ax+by=c\).

+) Nếu \(a \ne 0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{-a}{b}x+\dfrac{c}{b}\)

+) Nếu \(a \ne 0,\ b=0\) thì vẽ đường thẳng \(x=\dfrac{c}{a}\) song song hoặc trùng với trục tung.

+) Nếu \(a =0,\ b \ne 0\) thì vẽ đường thẳng \(y=\dfrac{c}{a}\) song song hoặc trùng với trục hoành.

Lời giải chi tiết:

\(0x + 2y = 5 \Leftrightarrow 2y=5 \Leftrightarrow y=\dfrac{5}{2}.\) Nghiệm tổng quát của phương trình là:

\(\left\{\begin{matrix} x \in R & & \\ y = \dfrac{5}{2} & & \end{matrix}\right.\)

Tập nghiệm là đường thẳng \(y = \dfrac{5}{2} \) đi qua \(A {\left( 0;\dfrac{5}{2} \right)} \) và song song với trục hoành.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved