Bài 12. Tổng các góc trong một tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài tập cuối chương IV
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Luyện tập chung trang 66, 67, 68
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 76
Luyện tập chung trang 60, 61, 62
Đề bài
Bài 2 (4.30). Cho góc xOy. Trên tia Ox lấy hai điểm A, M, trên tia Oy lấy hai điểm B, N sao cho OA = OB, OM = ON, OA > OM.Chứng minh rằng:
a) \(\Delta OAN = \Delta OBM\)
b) \(\Delta AMN = \Delta BNM\)
Phương pháp giải - Xem chi tiết
Chứng minh hai tam giác bằng nhau theo trường hợp c – g – c
Lời giải chi tiết
GT | \(\begin{array}{l}\widehat {xOy};A,M \in Ox;B,N \in Oy\\OA = OB,OM = ON,OA > OM\end{array}\) |
KL | a) \(\Delta OAN = \Delta OBM\) b) \(\Delta AMN = \Delta BNM\) |
a) Xét hai tam giác OAN và OBM ta có:
OA = OB (theo giả thiết)
\(\widehat {NOA} = \widehat {xOy} = \widehat {MOB}\)
ON = OM (theo giả thiết)
Vậy \(\Delta OAN = \Delta OBM\)( c – g – c)
b) Xét hai tam giác AMN và BNM ta có:
AN = BM, \(\widehat {MAN} = \widehat {OAN} = \widehat {OBM} = \widehat {NBM}\)(vì \(\Delta OAN = \Delta OBM\))
AM = OA – OM = OB – ON = BN
Vậy \(\Delta AMN = \Delta BNM\)( c – g – c)
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7