Bài 21 trang 118 Sách bài tập Hình học lớp 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG g

Trong không gian Oxyz cho bốn điểm A(1;1;0), B(0;2;1), C(1;0;2), D(1;1;1).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG g

LG a

Chứng minh bốn điểm đó không đồng phẳng. Tính thể tích tứ diện ABCD.

Lời giải chi tiết:

\(\overrightarrow {AB}  = ( - 1;1;1),\overrightarrow {AC}  = (0; - 1;2),\overrightarrow {AD}  = (0;0;1)\)

Ta có : \(\left[ {\overrightarrow {AB} .\overrightarrow {AC} } \right].\overrightarrow {AD}  = 1 \ne 0 \Rightarrow \overrightarrow {AB} ,\overrightarrow {AC} ,\overrightarrow {AD} \) không đồng phẳng. Do đó bốn điểm A, B, C, D không đồng phẳng và

\({V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = {1 \over 6}.\)

LG b

Tìm tọa độ trọng tâm của tam giác ABC, trọng tâm của tứ diện ABCD.

Lời giải chi tiết:

Gọi G là trọng tâm của tam giác ABC thì \(G = \left( {{2 \over 3};1;1} \right)\)

Gọi G’ là trọng tâm của tứ diện ABCD thì \(G' = \left( {{3 \over 4};1;1} \right)\)

LG c

Tính diện tích các mặt của tứ diện ABCD.

Lời giải chi tiết:

\({S_{ABC}} = {1 \over 2}\left| {\left[ {\overrightarrow {AB} .\overrightarrow {AC} } \right]} \right| \)

\(= {1 \over 2}\sqrt {\left| \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right.{{\left. \matrix{  1 \hfill \cr  1 \hfill \cr}  \right|}^2} + \left| \matrix{  1 \hfill \cr  2 \hfill \cr}  \right.{{\left. \matrix{   - 1 \hfill \cr  0 \hfill \cr}  \right|}^2} + \left| \matrix{   - 1 \hfill \cr  0 \hfill \cr}  \right.{{\left. \matrix{  1 \hfill \cr   - 1 \hfill \cr}  \right|}^2}}  = {{\sqrt {14} } \over 2}\)

\(\eqalign{  & {S_{ACD}} = {1 \over 2}\left| {\left[ {\overrightarrow {AC} ,\overrightarrow {AD} } \right]} \right|\cr& = {1 \over 2}\sqrt {\left| \matrix{   - 1 \hfill \cr  0 \hfill \cr}  \right.{{\left. \matrix{  2 \hfill \cr  1 \hfill \cr}  \right|}^2} + \left| \matrix{  2 \hfill \cr  1 \hfill \cr}  \right.{{\left. \matrix{  0 \hfill \cr  0 \hfill \cr}  \right|}^2} + \left| \matrix{  0 \hfill \cr  0 \hfill \cr}  \right.{{\left. \matrix{   - 1 \hfill \cr  0 \hfill \cr}  \right|}^2}}  = {1 \over 2}.  \cr  & {S_{ADB}} = {1 \over 2}\left| {\left[ {\overrightarrow {AD} ,\overrightarrow {AB} } \right]} \right| \cr&= {1 \over 2}\sqrt {\left| \matrix{  0 \hfill \cr  1 \hfill \cr}  \right.{{\left. \matrix{  1 \hfill \cr  1 \hfill \cr}  \right|}^2} + \left| \matrix{  1 \hfill \cr  1 \hfill \cr}  \right.{{\left. \matrix{  0 \hfill \cr   - 1 \hfill \cr}  \right|}^2} + \left| \matrix{  0 \hfill \cr   - 1 \hfill \cr}  \right.{{\left. \matrix{  0 \hfill \cr  1 \hfill \cr}  \right|}^2}}  = {{\sqrt 2 } \over 2}.  \cr  & {S_{BCD}} = {1 \over 2}\left| {\left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]} \right| \cr&= {1 \over 2}\sqrt {\left| \matrix{   - 2 \hfill \cr   - 1 \hfill \cr}  \right.{{\left. \matrix{  1 \hfill \cr  0 \hfill \cr}  \right|}^2} + \left| \matrix{  1 \hfill \cr  0 \hfill \cr}  \right.{{\left. \matrix{  1 \hfill \cr  1 \hfill \cr}  \right|}^2} + \left| \matrix{  1 \hfill \cr  1 \hfill \cr}  \right.{{\left. \matrix{   - 2 \hfill \cr   - 1 \hfill \cr}  \right|}^2}}  = {{\sqrt 3 } \over 2}. \cr} \)

LG d

Tính độ dài các đường cao của tứ diện ABCD.

Lời giải chi tiết:

Từ công thức tính thể tích khối tứ diện \(V = {1 \over 3}Bh\) (B là diện tích đáy,hlaf chiều cao tương ứng ) ta suy ra \(h = {{3V} \over B}.\)

Vậy nếu gọi \({h_A},{h_B},{h_C},{h_D}\) lần lượt là chiều cao hạ từ đỉnh A, B,C, D thì ta có :

\(\eqalign{  & {h_A} = {{3V} \over {{S_{BCD}}}} = {{3.{1 \over 6}} \over {{{\sqrt 3 } \over 2}}} = {1 \over {\sqrt 3 }},\cr&{h_B} = {{3V} \over {{S_{ACD}}}} = {{3.{1 \over 6}} \over {{1 \over 2}}} = 1.  \cr  & {h_C} = {{3V} \over {{S_{ABD}}}} = {{3.{1 \over 6}} \over {{{\sqrt 2 } \over 2}}} = {1 \over {\sqrt 2 }},\cr&{h_D} = {{3V} \over {{S_{ABC}}}} = {{3.{1 \over 6}} \over {{{\sqrt {14} } \over 2}}} = {1 \over {\sqrt {14} }}. \cr} \)

LG e

Tính góc giữa hai đường thẳng AB và CD.

Lời giải chi tiết:

Vì \(\overrightarrow {AB}  = ( - 1;1;1),\overrightarrow {CD}  = (0;1; - 1)\) nên \(\overrightarrow {AB} .\overrightarrow {CD}  = 0\), suy ra góc giữa AB  và CD bằng 900.

LG g

Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD.

Lời giải chi tiết:

Gọi I(x;y;z) là tâm mặt cầu ngoại tiếp tứ diện ABCD. Khi đó, ta có

\( \left\{ \matrix{  I{A^2} = I{B^2} \hfill \cr  I{A^2} = I{C^2} \hfill \cr  I{A^2} = ID \hfill \cr}  \right.\) 

\(  \Leftrightarrow \left\{ \matrix{   - 2x + 2y + 2z = 3 \hfill \cr   - 2y + 4z = 3 \hfill \cr  2z = 1 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{  x =  - {3 \over 2} \hfill \cr  y =  - {1 \over 2} \hfill \cr  z = {1 \over 2}. \hfill \cr}  \right.  \)

Vậy tâm của mặt cầu ngoại tiếp tứ giác ABCD là \(I\left( { - {3 \over 2}; - {1 \over 2};{1 \over 2}} \right)\) và bán kính của mặt cầu đó là

\(R = ID = \sqrt {{{\left( {{5 \over 2}} \right)}^2} + {{\left( {{3 \over 2}} \right)}^2} + {{\left( {{1 \over 2}} \right)}^2}}  = {{\sqrt {35} } \over 2}.\)

Do đó, phương trình mặt cầu ngoại tiếp tứ diện ABCD là

\({\left( {x + {3 \over 2}} \right)^2} + {\left( {y + {1 \over 2}} \right)^2} + {\left( {z - {1 \over 2}} \right)^2} = {{35} \over 4}.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved