Đề bài
Một công ty dự định chi tối đa 160 triệu đồng cho quảng cáo một sản phẩm mới trong một tháng trên các đài phát thanh và truyền hình. Biết cùng một thời lượng quảng cáo, số người mới quan tâm đến sản phẩm trên truyền hình gấp 8 lần trên đài phát thanh, tức là quảng cáo trên truyền hình có hiệu quả gấp 8 lần trên đài phát thanh.
Đài phát thanh chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 900 giây với chi phí là 80 nghìn đồng/giây. Đài truyền hình chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 360 giây với chi phí là 400 nghìn đồng/giây.
Công ty cần đặt thời gian quảng cáo trên các đài phát thanh và truyền hình như thế nào để hiệu quả nhất?
Gợi ý. Nếu coi hiệu quả khi quảng cáo 1 giây trên đài phát thanh là 1 (đơn vị) thì hiệu quả khi quảng cáo 1 giây trên đài truyền hình là 8 (đơn vị). Khi đó hiệu quả quảng cáo x (giây) trên đài phát thanh và y (giây) trên truyền hình là F(x, y) = x + 8y. Ta cần tìm giá trị lớn nhất của hàm F(x, y) với x, y thoả mãn các điều kiện trong đề bài.
Phương pháp giải - Xem chi tiết
- Gọi x và y là số giây quảng cáo trên đài phát thanh và trên truyền hình.
- Dựa vào số tiền dự chi tối đa, thời lượng lập hệ bất phương trình tương ứng.
- Lập biểu thức F biểu diễn hiệu quả quảng cáo theo x và y.
- Tìm giá trị lớn nhất của hàm F(x;y) thỏa mãn các điều kiện trong đề bài.
Lời giải chi tiết
| Đài phát thanh | Truyền hình |
Chi phí nhận quảng cáo | 80 nghìn đồng /giây | 400 nghìn đồng/giây |
Hiệu quả quảng cáo | 1 (đơn vị) | 8 (đơn vị) |
Gọi x và y là số giây quảng cáo trên đài phát thanh và trên truyền hình.
Khi đó \(x \ge 0;y \ge 0\)
160 triệu đồng=160000 (nghìn đồng)
Chi phí quảng cáo x giây trên đài phát thanh và y giây trên truyền hình là \(80x + 400y\)(nghìn đồng)
Vì công ty dự chi tối đa 160 triệu đồng nên ta có
\(80x + 400y \le 160000\)\( \Leftrightarrow x + 5y \le 2000\)
Đài phát thanh chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 900 giây nên ta có: \(x \le 900\)
Đài truyền hình chỉ nhận các quảng cáo có tổng thời lượng trong một tháng tối đa là 360 giây nên ta có: \(y \le 360\)
Ta có hệ bất phương trình:
\(\left\{ {\begin{array}{*{20}{l}}
{x \ge 0}\\
{y \ge 0}\\
{x + 5y \le 2000}\\
{x \le 900}\\
{y \le 360}
\end{array}} \right.\)
Xác định miền nghiệm là miền ngũ giác OABCD với:
A(900;0); B(900;220); C(200;360); D(0;360)
Hiệu quả quảng cáo là: \(F\left( {x;y} \right) = x + 8y\)
Ta có:
\(F\left( {0;0} \right) = 0\)
\(F\left( {900;0} \right) = 900 + 8.0 = 900\)
\(F\left( {900;220} \right) = 900 + 8.220 = 2660\)
\(F\left( {200;360} \right) = 3080\)
\(F\left( {0;360} \right) = 2880\)
Vậy công ty cần đặt thời gian quảng cáo trên đài phát thanh là 200 giây và trên truyền hình là 360 giây thì hiệu quả nhất.
Unit 3: Music
Chuyên đề 1. Cơ sở hóa học
Chương 5. Năng lượng hóa học
Chủ đề 7. Nguyên tố nhóm VIIA (nhóm Halogen)
Review 4
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10