ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 3 trang 141 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Cho hàm số

\(f(x) = \left\{\begin{matrix} 3x + 2; & x<-1\\ x^{2}-1 & x \geq -1 \end{matrix}\right.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Vẽ đồ thị của hàm số \(y = f(x)\). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó.

Phương pháp giải:

Khi \(x<-1\), vẽ đường thẳng \(y=3x+2\).

    Khi \(x \ge -1\), vẽ parabol \(y=x^2-1\).

Lưu ý: Vẽ trên cùng một hệ trục tọa độ.

Nhận xét về tính liên tục của hàm số (Đồ thị hàm số có bị gãy khúc tại điểm nào không?)

Lời giải chi tiết:

Khi \(x<-1\), đồ thị hàm số là đường thẳng \(y=3x+2\), khi \( x \ge -1\) đồ thị hàm số là parabol \(y=x^2-1\).

Đồ thị hàm số \(y = f(x)\) là một đường không liền nét mà bị đứt quãng tại \(x_0= -1\). Vậy hàm số đã cho liên tục trên khoảng \((-∞; -1)\) và \((- 1; +∞)\).

LG b

Khẳng định nhận xét trên bằng một chứng minh.

Phương pháp giải:

Hàm số \(y=f(x)\) liên tục tại điểm \(x_0\) \(\Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Lời giải chi tiết:

+) Nếu \(x < -1\): \(f(x) = 3x + 2\) liên tục trên \((-∞; -1)\) (vì đây là hàm đa thức nên liên tục trên tập xác định của nó).

+) Nếu \(x> -1\): \(f(x) = x^2- 1\) liên tục trên \((-1; +∞)\) (vì đây là hàm đa thức nên liên tục trên tập xác định của nó).

+) Xét tính liên tục của hàm số tại \(x = -1\);

Ta có 

\(\underset{x\rightarrow -1^{-}}{\lim} f(x) = \)\(\underset{x\rightarrow -1^{-}}{\lim} (3x + 2) = 3(-1) +2 = -1\).

\(\underset{x\rightarrow -1^{+}}{\lim} f(x) = \underset{x\rightarrow -1^{+}}{\lim} (x^2- 1)\)\( = (-1)^2- 1 = 0\).

Vì \(\underset{x\rightarrow -1^{-}}{\lim} f(x) ≠ \underset{x\rightarrow -1^{+}}{\lim} f(x)\) nên không tồn tại \(\underset{x\rightarrow -1}{\lim} f(x)\).

Vậy hàm số gián đoạn tại \(x_0= -1\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved