Đề bài
Cho hình nón N có bán kính đáy bằng R, đường cao SO. Một mặt phẳng (P) cố định vuông góc với SO tại O’, cắt hình nón N theo đường tròn có bán kính R’. Mặt phẳng (Q) thay đổi, vuông góc với SO tại điểm O1 (O1 nằm giữa O và O’), cắt hình nón theo thiết diện là hình tròn có bán kính x.
Hãy tính x theo R và R’ nếu (Q) chia phần hình nón nằm giữa (P) và đáy hình nón thành hai phần có thể tích bằng nhau.
Lời giải chi tiết
Gọi V1 là thể tích phần hình nón giữa đỉnh S và mp(P), V2 là thể tích phần hình nón giữa mặt phẳng (P) và (Q), V3 là thể tích phần hình nón giữa mặt phẳng (Q) và đáy hình nón đã cho. Khi ấy
\(\eqalign{ & {{{V_1}} \over {{V_1} + {V_2}}} = {\left( {{{R'} \over x}} \right)^3}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1) \cr & {{{V_1} + {V_2} + {V_3}} \over {{V_1} + {V_2}}} = {\left( {{R \over x}} \right)^3}\;\;\;\;\;\;\;\;(2) \cr} \)
Và \({V_3} = {V_2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;(3)\)
Từ (2), (3) suy ra
\({{{V_1} + 2{V_2}} \over {{V_1} + {V_2}}} = {\left( {{R \over x}} \right)^3}\;\;\;\;\;\;\;(4)\)
Từ (1), (4) ta có
\({{2({V_1} + {V_2})} \over {{V_1} + {V_2}}} = {{{R^3} + R{'^3}} \over {{x^3}}} \Leftrightarrow x = \root 3 \of {{{{R^3} + R'{^ 3}} \over 2}} \)
PHẦN SÁU. TIẾN HÓA
Đề thi học kì 2
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 12
Đề thi thử THPT QG
Tải 50 đề thi học kì 1 mới nhất có lời giải