PHẦN ĐẠI SỐ - TOÁN 8 TẬP 2

Bài 33 trang 48 SGK Toán 8 tập 2

Đề bài

Đố: Trong một kì thi, bạn Chiến phải thi bốn môn Văn, Toán, Tiếng Anh và Hóa. Chiến đã thi ba môn và được kết quả như bảng sau:

MônVănTiếng AnhHóa
Điểm8710

Kì thi quy định muốn đạt loại giỏi phải có điểm trung bình các môn thi là 8 trở lên và không có môn nào bị điểm dưới 6. Biết môn Văn và Toán được tính hệ số 2. Hãy cho biết, để đạt loại giỏi bạn Chiến phải có điểm thi môn Toán ít nhất là bao nhiêu?

Phương pháp giải - Xem chi tiết

Bước 1: Đặt điểm thi môn Toán làm ẩn, đặt điều kiện cho ẩn.

Bước 2: Áp dụng cách tính trung bình cộng.

Bước 3: Từ đề bài lập bất phương trình, giải bất phương trình.

Bước 4: Kết luận.

Lời giải chi tiết

Gọi \(x\) là điểm thi môn Toán, theo đề bài ta có điều kiện: \(6 ≤ x ≤ 10\).

Vì môn Văn và Toán được tính hệ số 2 nên ta có điểm trung bình bốn môn của Chiến là:

\(\dfrac{{8.2 + 7 + 10 + x.2}}{6} = \dfrac{{33 + 2x}}{6}\)

Để được xếp loại giỏi thì điểm trung bình các môn thi là 8 trở lên nên ta có bất phương trình:

\(\dfrac{{33 + 2x}}{6} \geqslant 8\)

\( \Leftrightarrow 33 + 2x \geqslant 8.6\)

\(⇔33 + 2x ≥ 48\)

\( \Leftrightarrow 2x \geqslant 48 - 33\)

\(⇔2x ≥ 15\)

\( \Leftrightarrow x \geqslant 15:2\)

\(⇔x ≥ 7,5\)

Vậy để đạt được loại giỏi thì bạn Chiến phải có điểm thi môn Toán ít nhất là \(7,5\).

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved