Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Đề bài
Một người có số tiền không quá \(70 000\) đồng gồm \(15\) tờ giấy bạc với hai loại mệnh giá: loại \(2000\) đồng và loại \(5000\) đồng. Hỏi người đó có bao nhiêu tờ giấy bạc loại \(5000\) đồng?
Phương pháp giải - Xem chi tiết
Bước 1: Đặt số tờ giấy bạc loại \(5000\) đồng làm ẩn, sau đó biểu diễn đại lượng còn lại theo ẩn.
Bước 2: Dựa vào đề bài ta lập được bất phương trình.
Bước 3: Giải bất phương trình.
Bước 4: Kết luận
Lời giải chi tiết
Gọi \(x\) là số tờ giấy bạc loại \(5000\) đồng. (với \(0 < x < 15, x\) nguyên)
Số tờ giấy bạc loại \(2000\) đồng là \(15 - x\)
Vì số tiền không quá \(70000 \) đồng nên ta có bất phương trình sau:
\(5000x + 2000(15 - x ) ≤ 70000\)
\( \Leftrightarrow 5000x + 30000 - 2000x ≤ 70000\)
\( \Leftrightarrow 3000x ≤ 40000\)
\( \Leftrightarrow x \leqslant 40000:3000\)
\( \Leftrightarrow x \leqslant \dfrac{{40}}{3}\)
Kết hợp với điều kiện thì \(0 < x \leqslant \dfrac{{40}}{3}\) mà \(x\) là số nguyên nên \(x\) có thể là số nguyên dương từ \(1\) đến \(13\).
Vậy số tờ giấy bạc loại \(5000\) đồng người ấy có thể có là các số nguyên dương từ \(1\) đến \(13\).
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Địa lí lớp 8
CHƯƠNG 1. CHẤT - NGUYÊN TỬ - PHÂN TỬ
Chương 3: Mol và tính toán hóa học
Bài 8: Tôn trọng và học hỏi các dân tộc khác
Chương 8: Sinh vật và môi trường
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8