ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 4 trang 104 SGK Đại số và Giải tích 11

Đề bài

Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là \(31\) và tổng của năm số hạng sau là \(62\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức số hạng tổng quát của CSN: \({u_n} = {u_1}{q^{n - 1}}\) và công thức tổng n số hạng đầu tiên của CSN: \({S_n} = \dfrac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Lời giải chi tiết

Giả sử có cấp số nhân: \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\)

Theo giả thiết ta có:

\({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 31\).        (1)

\({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 62\).        (2)

Nhân hai vế của (1) với \(q\), ta được:  \({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)

\( \Leftrightarrow \)\({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)     (3)

Từ (2) và (3) \(\Rightarrow 62 = 31.q \Rightarrow q = 2\).

Ta có \({S_5} = 31 \Leftrightarrow \dfrac{{{u_1}\left( {1 - {2^5}} \right)}}{{1 - 2}} = 31\) \( \Leftrightarrow 31{u_1} = 31 \Leftrightarrow {u_1} = 1\)

Vậy ta có cấp số nhân là: \(1, 2, 4, 8, 16, 32\).

Cách khác:

Vậy ta có cấp số nhân là: \(1, 2, 4, 8, 16, 32\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved