Đề bài
Cho tam giác ABC, trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Dựng đường tròn tâm O ngoại tiếp tam giác DBC. Gọi H và K lần lượt là trung điểm của BC và BD. Chứng minh OH > OK.
Phương pháp giải - Xem chi tiết
Sử dụng định lí: Dây dài hơn thì gần tâm hơn.
Lời giải chi tiết
Vì H, K lần lượt là trung điểm của BC và BD nên \(OH \bot BC;\,\,OK \bot BD\) (quan hệ vuông góc giữa đường kính và dây cung).
Áp dụng bất đẳng thức tam giác trong tam giác ABC ta có: \(AB + AC > BC\).
Mà \(AC = AD\,\,\left( {gt} \right) \Rightarrow AB + AD > BC\)
\(\Rightarrow BD > BC \Rightarrow OK < OH\) (dây lớn hơn thì gần tâm hơn).
Vậy \(OH > OK\).
Đề thi vào 10 môn Toán Thái Nguyên
Đề thi vào 10 môn Văn Cần Thơ
Đề thi vào 10 môn Toán Hải Dương
Đề thi vào 10 môn Toán Bình Định
Đề kiểm tra 15 phút - Chương 3 - Sinh 9