Viết phương trình tiếp tuyến của đường cong \(y = x^3\):
LG a
Tại điểm có tọa độ \((-1;-1)\)
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{{x^3} - x_0^3}}{{x - {x_0}}}\\
= \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2} \right)\\ = x_0^2 + {x_0}.{x_0} + x_0^2 = 3x_0^2\\
\Rightarrow y'\left( {{x_0}} \right) = 3x_0^2
\end{array}\)
Ta có: \(y' (-1) = 3\).
Vậy phương trình tiếp tuyến tại điểm \((-1;-1)\) là: \(y = 3\left( {x + 1} \right) - 1 = 3x + 2\)
LG b
Tại điểm có hoành độ bằng \(2\)
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Ta có: \(y' (2) = 3.2^2=12\), \(y(2) =2^3= 8\).
Vậy phương trình tiếp tuyến tại điểm có hoành độ bằng \(2\) là: \(y = 12\left( {x - 2} \right) + 8 = 12x - 16\).
LG c
Biết hệ số góc của tiếp tuyến bằng \(3\)
Phương pháp giải:
Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x_0\) là \(f'\left( {{x_0}} \right) = 3\).
Giải phương trình tìm \(x_0\), từ đó viết phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\).
Lời giải chi tiết:
Gọi \(x_0\) là hoành độ tiếp điểm. Ta có:
\(y' (x_0) = 3 \Leftrightarrow 3{x_0}^2= 3\Leftrightarrow {x_0}^2= 1\) \(\Leftrightarrow x_0= ±1\).
+) Với \(x_0= 1\) ta có \(y(1) = 1\), phương trình tiếp tuyến là \(y = 3\left( {x - 1} \right) + 1 = 3x - 2\)
+) Với \(x_0= -1\) ta có \(y(-1) = -1\), phương trình tiếp tuyến là \(y = 3\left( {x + 1} \right) - 1 = 3x + 2\)
Chủ đề 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Ngữ pháp
Bài 14: Arene (Hydrocarbon thơm)
Chủ đề 1. Dao động
Unit 8: Cties
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11