CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI

Bài 5 trang 39 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Trên mặt phẳng tọa độ cho parabol (P): \(y = a{x^2}\)

a) Biết (P) đi qua điểm M(2; -1). Tìm hệ số a, vẽ (P) với a vừa tìm được.

b) Tìm tung độ của điểm thuộc parabol có hoành độ x =  - 3.

c) Tìm các điểm thuộc parabol có tung độ y = -9.

Phương pháp giải - Xem chi tiết

a) (P): \(y = a{x^2}\)  đi qua điểm \(A\left( {{x_0};{y_0}} \right)\) nên ta có \({y_0} = a.x_0^2\)

b) Muốn tìm tung độ của điểm thuộc parabol có hoành độ \(x = {x_0}\)  thay thay \(x = {x_0}\) vào phương trình (P) từ đó ta tìm được y.

c) Muốn tìm hoành độ của điểm thuộc parabol có tung độ \(y = {y_0}\)  thay thay \(y = {y_0}\) vào phương trình (P) từ đó ta tìm được x.

Lời giải chi tiết

Trên mặt phẳng tọa độ cho parabol (P): \(y = a{x^2}\)

a) Biết (P) đi qua điểm M(2; -1). Tìm hệ số a, vẽ (P) với a vừa tìm được.

(P) đi qua điểm M(2;-1) nên thay x = 2; y = -1  vào (P) ta được: \( - 1 = a{.2^2} \Leftrightarrow a = \dfrac{{ - 1}}{4}\)

Khi đó (P) cần tìm có dạng: \(y = \dfrac{{ - 1}}{4}{x^2}\)

Bảng giá trị

\(x\)

\( - 4\)

\( - 2\)

0

2

4

\(y =  - \dfrac{1}{4}{x^2}\)

\( - 4\)

\( - 1\)

0

\( - 1\)

\( - 4\)

Vậy đồ thị hàm số \(y =  - \dfrac{1}{4}{x^2}\) là parabol và đi qua các điểm có tọa độ là \(\left( { - 4; - 4} \right);\left( { - 2; - 1} \right);\left( {0;0} \right);\left( {2; - 1} \right);\)\(\,\left( {4; - 4} \right)\)

 

b) Tìm tung độ của điểm thuộc parabol có hoành độ x =  - 3.

Điểm thuộc parabol có hoành độ \(x =  - 3 \Rightarrow y =  - \dfrac{1}{4}.{\left( { - 3} \right)^2} = \dfrac{{ - 9}}{4}\)

Vậy điểm đó có tọa độ là \(\left( { - 3;\dfrac{{ - 9}}{4}} \right)\)

c) Tìm các điểm thuộc parabol có tung độ y = -9.

Điểm thuộc parabol có tung độ y = - 9 nên ta có: \(\dfrac{{ - 1}}{4}{x^2} =  - 9 \Leftrightarrow {x^2} = 36 \Leftrightarrow x =  \pm 6\) .

Khi đó ta có các điểm thuộc parabol có tung độ y = -9 là \(\left( { - 6; - 9} \right);\left( {6; - 9} \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved