Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải các phương trình bằng cách đặt ẩn phụ:
LG a
LG a
\(2{\left( {{x^2} - 2{\rm{x}}} \right)^2} + 3\left( {{x^2} - 2{\rm{x}}} \right) + 1 = 0\)
Phương pháp giải:
Đặt \({x^2} - 2x = t\) để đưa phương trình đã cho về phương trình bậc hai ẩn \(t.\)
Lời giải chi tiết:
Đặt \({x^2} - 2x = t\), ta thu được phương trình \(2{t^2} + 3t + 1 = 0\)
Phương trình trên có \(a - b + c = 2 - 3 + 1 = 0\) nên có hai nghiệm \(t = - 1;t = - \dfrac{1}{2}.\)
+ Với \(t = - 1 \Rightarrow {x^2} - 2x = - 1\\ \Leftrightarrow {x^2} - 2x + 1 = 0\\ \Leftrightarrow {\left( {x - 1} \right)^2} = 0 \Leftrightarrow x = 1\)
+ Với \(t = - \dfrac{1}{2} \Rightarrow {x^2} - 2x = - \dfrac{1}{2}\\ \Leftrightarrow {x^2} - 2x + 1 = \dfrac{1}{2} \Leftrightarrow {\left( {x - 1} \right)^2} = \dfrac{1}{2}\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = \dfrac{{\sqrt 2 }}{2}\\x - 1 = - \dfrac{{\sqrt 2 }}{2}\end{array} \right. \\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{2 + \sqrt 2 }}{2}\\x = \dfrac{{2 - \sqrt 2 }}{2}\end{array} \right.\)
Vậy phương trình đã cho có ba nghiệm \(x = 1;x = \dfrac{{2 + \sqrt 2 }}{2};x = \dfrac{{2 - \sqrt 2 }}{2}\)
LG b
LG b
\({\left( {x + {1 \over x}} \right)^2} - 4\left( {x + {1 \over x}} \right) + 3 = 0\)
Phương pháp giải:
Đặt \(x + \dfrac{1}{x} = t\) để đưa phương trình đã cho về phương trình bậc hai ẩn \(t.\)
Lời giải chi tiết:
ĐK: \(x \ne 0.\)
Đặt \(x + \dfrac{1}{x} = t\), ta thu được phương trình \({t^2} - 4t + 3 = 0\)
Phương trình trên có \(a + b + c = 1 + \left( { - 4} \right) + 3 = 0\) nên có hai nghiệm \(t = 1;t = 3.\)
+ Với \(t = 1 \Rightarrow x + \dfrac{1}{x} = 1 \Rightarrow {x^2} - x + 1 = 0\) .
Xét \(\Delta = {\left( { - 1} \right)^2} - 4.1.1 = - 3 < 0\) nên phương trình vô nghiệm.
+ Với \(t = 3 \Rightarrow x + \dfrac{1}{x} = 3\\ \Rightarrow {x^2} - 3x + 1 = 0\, (*)\)
Phương trình (*) có \(\Delta = {\left( { - 3} \right)^2} - 4.1.1 = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{3 + \sqrt 5 }}{2}\\x = \dfrac{{3 - \sqrt 5 }}{2}\end{array} \right.\) (thỏa mãn)
Vậy phương trình đã cho có hai nghiệm \(x = \dfrac{{3 + \sqrt 5 }}{2};x = \dfrac{{3 - \sqrt 5 }}{2}\) .
Câu hỏi tự luyện Toán 9
Đề kiểm tra 15 phút - Học kì 2 - Sinh 9
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Giáo dục công dân lớp 9
Đề thi vào 10 môn Văn Hồ Chí Minh
Bài 5: Tình hữu nghị giữa các dân tộc trên thế giới