Giải các phương trình sau:
LG a
\(\tan (2x + 1)\tan (3x - 1) = 1\)
Phương pháp giải:
+) Tìm ĐKXĐ.
+) Sử dụng công thức \({1 \over {\tan x}} = \cot x = \tan \left( {{\pi \over 2} - x} \right)\)
+) Đưa phương trình về dạng phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in Z} \right)\)
Lời giải chi tiết:
\(a)\,\,\tan \left( {2x + 1} \right)\tan \left( {3x - 1} \right) = 1\)
ĐK: \(\left\{ \matrix{ \cos \left( {2x + 1} \right) \ne 0 \hfill \cr \cos \left( {3x - 1} \right) \ne 0 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
2x + 1 \ne \frac{\pi }{2} + k\pi \\
3x - 1 \ne \frac{\pi }{2} + k\pi
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
2x \ne \frac{\pi }{2} - 1 + k\pi \\
3x \ne \frac{\pi }{2} + 1 + k\pi
\end{array} \right. \) \( \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{4} - \frac{1}{2} + \frac{{k\pi }}{2}\\
x \ne \frac{\pi }{6} + \frac{1}{3} + \frac{{k\pi }}{3}
\end{array} \right.\)
\(\eqalign{ & pt \Leftrightarrow \tan \left( {2x + 1} \right) = {1 \over {\tan \left( {3x - 1} \right)}} \cr & \Leftrightarrow \tan \left( {2x + 1} \right) = \cot \left( {3x - 1} \right)\cr & \Leftrightarrow \tan \left( {2x + 1} \right) = \tan \left( {{\pi \over 2} - 3x + 1} \right) \cr & \Leftrightarrow 2x + 1 = {\pi \over 2} - 3x + 1 + k\pi \cr & \Leftrightarrow 5x = {\pi \over 2} + k\pi \cr & \Leftrightarrow x = {\pi \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\,\,\left( {tm} \right) \cr} \)
Vậy nghiệm của phương trình là \(x = {\pi \over {10}} + {{k\pi } \over 5}\,\,\left( {k \in Z} \right)\).
LG b
\(\tan x + \tan \left( {x + {\pi \over 4}} \right) = 1\)
Phương pháp giải:
+) Tìm ĐKXĐ.
+) Sử dụng công thức \(\tan \left( {a + b} \right) = {{\tan a + \tan b} \over {1 - \tan a\tan b}}\)
+) Đặt \(t = \tan x\), đưa phương trình về dạng phương trình bậc hai ẩn t, giải phương trình tìm nghiệm t.
+) Giải phương trình lượng giác cơ bản của tan: \(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \,\,\left( {k \in Z} \right)\)
Lời giải chi tiết:
\(b)\,\,\tan x + \tan \left( {x + {\pi \over 4}} \right) = 1\)
ĐK: \(\left\{ \matrix{ \cos x \ne 0 \hfill \cr \cos \left( {x + {\pi \over 4}} \right) \ne 0 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
x + \frac{\pi }{4} \ne \frac{\pi }{2} + k\pi
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ne \frac{\pi }{2} + k\pi \\
x \ne \frac{\pi }{4} + k\pi
\end{array} \right.\)
Khi đó,
\(PT \Leftrightarrow \tan x + \frac{{\tan x + \tan \frac{\pi }{4}}}{{1 - \tan x\tan \frac{\pi }{4}}} = 1\)
\(\eqalign{ & \Leftrightarrow \tan x + {{\tan x + 1} \over {1 - \tan x}} = 1 \cr & \Leftrightarrow \tan x - {\tan ^2}x + \tan x + 1 = 1 - \tan x \cr & \Leftrightarrow {\tan ^2}x - 3\tan x = 0 \cr & \Leftrightarrow \tan x\left( {\tan x - 3} \right) = 0 \cr & \Leftrightarrow \left[ \matrix{ \tan x = 0 \hfill \cr \tan x = 3 \hfill \cr} \right. \cr & \Leftrightarrow \left[ \matrix{ x = k\pi \hfill \cr x = \arctan 3 + k\pi \hfill \cr} \right.\,\,\,\left( {k \in Z} \right) (tm) \cr} \)
Vậy nghiệm của phương trình là \(x = k\pi \) hoặc \(x = \arctan 3 + k\pi \,\,\left( {k \in Z} \right)\).
Unit 0: Introduction
Phần hai: Giáo dục pháp luật
Chuyên đề 1. Dinh dưỡng khoáng - Tăng năng suất cây trồng và nông nghiệp sạch
CHƯƠNG VII: HIĐROCABON THƠM. NGUỒN HIĐROCABON THIÊN NHIÊN
Grammar Expansion
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11