Bài 6 trang 79 sách giáo khoa hình học 11

Đề bài

Cho hình lăng trụ tam giác \(ABC.A'B'C'\), Gọi \(I, J\) lần lượt là trọng tâm của tam giác \(ABC\) và \(A'B'C'\) (h.2.77). Thiết diện tạo bởi mặt phẳng \((AIJ)\) với hình lăng trụ đã cho là

(A) Tam giác cân;

(B) Tam giác vuông;

(C) Hình thang;

(D) Hình bình hành.

Phương pháp giải - Xem chi tiết

Xác định thiết diện của lăng trụ tạo bởi mặt phẳng \((AIJ)\).

Sử dụng tính chất: Nếu hai mặt phẳng chứa hai đường thẳng song song thì cắt nhau theo giao tuyến song song với hai đường thẳng đó.

Lời giải chi tiết

 

Gọi \(M,M'\) lần lượt là trung điểm của \(BC,B'C'\).

Do \(I, J\) là trọng tâm tam giác \(ABC, A'B'C'\) nên \(A, I, M\) thẳng hàng và \(A', J, M'\) thẳng hàng.

Do đó \(\left( {AA'M'M} \right) \equiv \left( {AIJ} \right)\) nên thiết diện của lăng trụ tạo bởi mặt phẳng \((AIJ)\) là tứ giác \(AA'M'M\).

Ta có \(\left\{ \begin{array}{l}\left( {AA'M'M} \right) \cap \left( {A'B'C'} \right) = A'M'\\\left( {AA'M'M} \right) \cap \left( {ABC} \right) = AM\\\left( {ABC} \right)//\left( {A'B'C'} \right)\end{array} \right.\)

\(\Rightarrow A'M'//AM\).

Lại có \(\Delta ABC = \Delta A'B'C' \Rightarrow AM = A'M'\).

Vậy tứ giác \(AA'M'M\) là hình bình hành.

Chọn đáp án D.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved