1. Nội dung câu hỏi
Cho chóp tứ giác \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 4a,\) \(AD = 3a\). Các cạnh bên đều có độ dài \(5a\). Góc nhị diện \(\left[ {S,BC,A} \right]\) có số đo là
A. \({75^ \circ }46'\).
B. \({71^ \circ }21'\).
C. \({68^ \circ }31'\).
D. \({65^ \circ }12'\).
2. Phương pháp giải
Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)
Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).
Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).
Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).
Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).
3. Lời giải chi tiết
Gọi \(O\) là tâm của đáy. Kẻ \(OH \bot BC\left( {H \in BC} \right)\).
\(\Delta SAC\) cân tại \(S\)\( \Rightarrow SO \bot AC\)
\(\Delta SB{\rm{D}}\) cân tại \(S\)\( \Rightarrow SO \bot B{\rm{D}}\)
\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot BC\)
Mà \(OH \bot BC\)
Vậy \(\widehat {SHO}\) là góc nhị diện \(\left[ {S,BC,A} \right]\).
\(\begin{array}{l}{S_{ABC{\rm{D}}}} = AB.A{\rm{D}} = 12{a^2} \Rightarrow {S_{OBC}} = \frac{1}{4}{S_{ABC{\rm{D}}}} = 3{a^2}\\{S_{OBC}} = \frac{1}{2}BC.OH \Rightarrow OH = \frac{{2{{\rm{S}}_{OBC}}}}{{BC}} = 2a\\AC = \sqrt {A{B^2} + B{C^2}} = 5a \Rightarrow OC = \frac{1}{2}AC = \frac{{5a}}{2}\\SO = \sqrt {S{C^2} - O{C^2}} = \frac{{5a\sqrt 3 }}{2}\\\tan \widehat {SHO} = \frac{{SO}}{{OH}} = \frac{{5\sqrt 3 }}{4} \Rightarrow \widehat {SHO} \approx {65^ \circ }12'\end{array}\)
Chọn D.
Chuyên đề 11.3: Cuộc Cách mạng công nghiệp lần thứ tư (4.0)
Chương IV. Dòng điện. Mạch điện
Chủ đề 5: Đạo đức kinh doanh
Chương I. Dao động
Phần hai: Giáo dục pháp luật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11