Bài 7 trang 120 SGK Hình học 11

Đề bài

Cho hình chóp tam giác đều \(S.ABC\) có cạnh đáy bằng \(3a\), cạnh bên bằng \(2a\). Tính khoảng cách từ \(S\) tới mặt đáy \((ABC)\).

Phương pháp giải - Xem chi tiết

Gọi H là tâm tam giác đều ABC \( \Rightarrow SH \, \bot  \, \left( {ABC} \right) \Rightarrow d\left( {S;\left( {ABC} \right)} \right) = SH\)

Áp dụng định lí Pytago trong tam giác vuông để tính \(SH\).

Lời giải chi tiết

 

Gọi \(H\) là tâm của tam giác đều \(ABC\) ta có \(SH \,  \bot  \, (ABC) \)

\(\Rightarrow d(S,(ABC))=SH\)

Gọi \(N\) là trung điểm của \(BC\).

\(\Rightarrow BN = NC = \dfrac{{3a}}{2}\)

Tam giác \(ABN\) vuông tại \(N\) nên:

\(AN = \sqrt {A{B^2} - B{N^2}}  \) \(= \sqrt {{{\left( {3a} \right)}^2} - {{\left( {\dfrac{{3a}}{2}} \right)}^2}}  = \dfrac{{3a\sqrt 3 }}{2}\)

\(H\) là trọng tâm tam giác \(ABC\) \(\Rightarrow AH=\dfrac 2 3 .AN = a\sqrt 3 \)

Áp dụng định lí Pytago vào tam giác vuông \(SAH\) ta có:

\(SH = \sqrt{SA^{2}-AH^{2}}=\sqrt{4a^{2}-(a\sqrt{3})^{2}}=a.\)

Vậy \(d\left( {S;\left( {ABC} \right)} \right) = SH = a\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved