ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Bài 7 trang 75 sgk đại số và giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Có hai hộp chứa các quả cầu. Hộp thứ nhất chứa \(6\) quả trắng, \(4\) quả đen. Hộp thứ hai chứa \(4\) quả trắng, \(6\) quả đen. Từ mỗi hộp lấy ngẫu nhiên một quả. Kí hiệu:

\(A\) là biến cố: "Quả lấy từ hộp thứ nhất trắng";

\(B\) là biến cố: "Quả lấy từ hộp thứ hai trắng".

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Xét xem \(A\) và \(B\) có độc lập không.

Phương pháp giải:

Định nghĩa hai biến cố độc lập: Hai biến cố A, B được gọi là độc lập với nhau nếu sự xảy ra của biến cố A không ảnh hưởng đến xác suất xảy ra biến cố B. A và B là hai biến cố độc lập khi và chỉ khi \(P\left( {A.B} \right) = P\left( A \right).P\left( B \right)\).

Lời giải chi tiết:

Phép thử \(T\) được xét là: "Từ mỗi hộp lấy ngẫu nhiên một quả cầu".

Không gian mẫu là kết quả của việc lấy ngẫu nhiên 1 quả cầu ở hộp thứ nhất và một quả cầu ở hộp thứ hai

+ Có 10 cách lấy 1 quả cầu bất kì ở hộp 1 và có 10 cách lấy 1 quả cầu bất kì ở hộp 2. Nên số phần tử của không gian mẫu là;

⇒ n(Ω) = 10.10 = 100.

A: “ Quả cầu lấy từ hộp thứ nhất trắng”

⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 10 cách lấy quả cầu ở hộp B

⇒ n(A) = 6.10 = 60.

Suy ra \(P(A) \)= \(\frac{60}{100}\) = \(0,6\).

B: “Quả cầu lấy từ hộp thứ hai trắng”

⇒ Có 4 cách lấy quả cầu màu trắng ở hộp B và 10 cách lấy quả cầu ở hộp A

⇒ n(B) = 4.10 = 40.

Suy ra \(P(B)\) = \(\frac{40}{100}\) = \(0,4\).

A.B: “Cả hai quả cầu lấy ra đều trắng”

⇒ Có 6 cách lấy quả cầu màu trắng ở hộp A và 4 cách lấy quả cầu màu trắng ở hộp B

⇒ n(A.B) = 6.4 = 24.

Suy ra: \(P(A . B)\) = \(\frac{24}{100}\) = \(0,24 = 0,6 . 0,4 = P(A) . P(B)\).

Như vậy, ta có \(P(A . B) = P(A) . P(B)\).

Suy ra \(A\) và \(B\) là hai biến cố độc lập với nhau.

LG b

Tính xác suất sao cho hai quả cầu lấy ra cùng màu.

Phương pháp giải:

Gọi C là biến cố: "Hai quả cầu lấy ra cùng màu" ta có \(C = A . B\) + \(\overline{A}\) . \(\overline{B}\). Với \(\overline A ;\,\,\overline B \) lần lượt là các biến cố đối của biến cố A và B.

Lời giải chi tiết:

Gọi \(C\) là biến cố: "Lấy được hai quả cầu cùng màu". Ta có

\(C = A . B\) + \(\overline{A}\) . \(\overline{B}\).

Trong đó \(\overline{A}\) = "Quả cầu lấy từ hộp thứ nhất có màu đen" và \(P\)(\(\overline{A}\)) = \(0,4\).

\(\overline{B}\): "Quả cầu lấy từ hộp thứ hai có màu đen" và P(\(\overline{B}\)) = \(0,6\).

Và ta có \(A . B\) và \(\overline{A}\) . \(\overline{B}\) là hai biến cố xung khắc với nhau.

\(A\) và \(B\) độc lập với nhau, nên \(\overline{A}\) và \(\overline{B}\) cũng độc lập với nhau.

Qua trên suy ra;

\(P(C) = P\)(\(A . B\) + \(\overline{A}\) . \(\overline{B}\))

\(=P(A . B)\) + \(P\)( \(\overline{A}\) . \(\overline{B}\)) = \(P(A) . P(B)\) + \(P\)(\(\overline{A}\)) . \(P\)(\(\overline{B}\))

\(=0,6 . 0,4 + 0,4 . 0,6 = 0,48\).

LG c

Tính xác suất sao cho hai quả cầu lấy ra khác màu.

Phương pháp giải:

Gọi D là biến cố: "Hai quả cầu lấy ra khác màu" ta có \(D = \overline C \).

Lời giải chi tiết:

Gọi \(D\) là biến cố: "Lấy được hai quả cầu khác màu". Ta có

\(D= \overline{C}\Rightarrow P(D) = 1 - P(C) = 1 - 0,48 = 0,52\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved