Đề bài
Viết phương trình mặt phẳng trung trực của đoạn thẳng \(AB\) với \(A(2 ; 3 ; 7)\) và \(B(4 ; 1 ; 3)\).
Phương pháp giải - Xem chi tiết
Gọi mặt phẳng \((P)\) là mặt phẳng cần tìm. Khi đó mặt phẳng \((P)\) đi qua trung điểm \(I\) của đoạn thẳng \(AB\) và vuông góc với \(AB\) hay \((P)\) nhận vecto \(\overrightarrow{AB}\) làm VTPT.
Sau đó ta áp dụng công thức dưới đây để lập phương trình:
Phương trình mặt phẳng \((P)\) đi qua \(M(x_0;\, \, y_0;\,\, z_0)\) và có VTPT \(\overrightarrow n = \left( {a;\;b;\;c} \right)\) có dạng: \(a\left( {x - {x_0}} \right) + b\left( {y - {y_0}} \right) + c\left( {z - {z_0}} \right) = 0.\)
Lời giải chi tiết
Gọi \(I\) là trung điểm của \(AB\)
\( \Rightarrow \left\{ \begin{array}{l}
{x_I} = \dfrac{{{x_A} + {x_B}}}{2} = 3\\
{y_I} = \dfrac{{{y_A} + {y_B}}}{2} = 2\\
{z_I} = \dfrac{{{z_A} + {z_B}}}{2} = 5
\end{array} \right. \Rightarrow I\left( {3;\;2;\;5} \right).\)
Khi đó mặt phẳng \((P)\) cần lập đi qua \(I\) và nhận \(\overrightarrow{AB}\) làm VTPT.
Có \(\overrightarrow{AB}(2 ; -2; -4)\) và \(I(3 ; 2 ; 5)\) nên phương trình mặt phẳng \((P)\) là:
\(2(x - 3) - 2(y - 2) - 4(z - 5) = 0\)
\( \Leftrightarrow 2x - 2y - 4z + 18 = 0\)
\( \Leftrightarrow x -y -2z + 9 = 0.\)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Giáo dục công dân lớp 12
Đề kiểm tra 15 phút - Học kì 2 - Ngữ văn 12
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Giáo dục công dân lớp 12
GIẢI TÍCH SBT - TOÁN 12
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 12