ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 10 trang 108 SGK Đại số và giải tích 11

Đề bài

Tứ giác \(ABCD\) có số đo (độ) của các góc lập thành một cấp số cộng theo thứ tự \(A, B, C, D\). Biết rằng góc \(C\) gấp năm lần góc \(A\). Tính các góc của tứ giác.

Phương pháp giải - Xem chi tiết

Sử dụng công thức SHTQ: \({u_n} = {u_1} + \left( {n - 1} \right)d\)

Lời giải chi tiết

Theo giả thiết ta có: \(A, B, C, D\) là một cấp số cộng và \(\widehat C = 5\widehat A\)            

Giả sử cấp số cộng tạo thành có công sai là: \(d\). Theo tính chất của cấp số cộng ta có:

\(\widehat B=\widehat A+d\), \(\widehat C=\widehat A+2d\), \(\widehat D=\widehat A+3d\)

\(\Rightarrow \widehat A+2d= 5\widehat A\)

\(\Leftrightarrow 4\widehat A-2d=0\)    (1)

Mà tổng bốn góc của tứ giác bằng \(360^0\) nên:

\(\widehat A+\widehat B+ \widehat C+\widehat D=360^0 \)

\( \Leftrightarrow \widehat A + \left( {\widehat A + d} \right) + \left( {\widehat A + 2d} \right) + \left( {\widehat A + 3d} \right) = {360^0}\)

\(\Leftrightarrow 4\widehat A +6d=360^0\) (2)      

Lấy \((2)-(1)\) ta được: \(8d=360^0\Rightarrow d=45^0\)

\(\begin{array}{l}
\Rightarrow 4\widehat A - {2.45^0} = 0\\
\Leftrightarrow \widehat A = 22,{5^0} = {22^0}30'\\
\widehat B = \widehat A + {45^0} = {67^0}30'\\
\widehat C = \widehat A + {2.45^0} = {112^0}30'\\
\widehat D = \widehat A + {3.45^0} = {157^0}30'
\end{array}\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved