Đề bài
Tứ giác \(ABCD\) có số đo (độ) của các góc lập thành một cấp số cộng theo thứ tự \(A, B, C, D\). Biết rằng góc \(C\) gấp năm lần góc \(A\). Tính các góc của tứ giác.
Phương pháp giải - Xem chi tiết
Sử dụng công thức SHTQ: \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Lời giải chi tiết
Theo giả thiết ta có: \(A, B, C, D\) là một cấp số cộng và \(\widehat C = 5\widehat A\)
Giả sử cấp số cộng tạo thành có công sai là: \(d\). Theo tính chất của cấp số cộng ta có:
\(\widehat B=\widehat A+d\), \(\widehat C=\widehat A+2d\), \(\widehat D=\widehat A+3d\)
\(\Rightarrow \widehat A+2d= 5\widehat A\)
\(\Leftrightarrow 4\widehat A-2d=0\) (1)
Mà tổng bốn góc của tứ giác bằng \(360^0\) nên:
\(\widehat A+\widehat B+ \widehat C+\widehat D=360^0 \)
\( \Leftrightarrow \widehat A + \left( {\widehat A + d} \right) + \left( {\widehat A + 2d} \right) + \left( {\widehat A + 3d} \right) = {360^0}\)
\(\Leftrightarrow 4\widehat A +6d=360^0\) (2)
Lấy \((2)-(1)\) ta được: \(8d=360^0\Rightarrow d=45^0\)
\(\begin{array}{l}
\Rightarrow 4\widehat A - {2.45^0} = 0\\
\Leftrightarrow \widehat A = 22,{5^0} = {22^0}30'\\
\widehat B = \widehat A + {45^0} = {67^0}30'\\
\widehat C = \widehat A + {2.45^0} = {112^0}30'\\
\widehat D = \widehat A + {3.45^0} = {157^0}30'
\end{array}\)
Câu hỏi tự luyện Địa 11
Tải 10 đề kiểm tra 15 phút - Chương VI - Hóa học 11
CHƯƠNG 7: HIĐROCACBON THƠM, NGUỒN HIĐROCACBON THIÊN NHIÊN. HỆ THỐNG HÓA VỀ HIĐROCACBON
Bài 8: Tiết 3: Thực hành: Tìm hiểu sự thay đổi GDP và phân bố nông nghiệp của Liên bang Nga - Tập bản đồ Địa lí 11
Review (Units 5 - 6)
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11