ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu 11 trang 143 SGK Đại số và giải tích 11

Đề bài

Cho dãy số \((u_n)\) với : \(u_n = \sqrt 2 + (\sqrt2)^2+......+( \sqrt 2)^n\)

Chọn mệnh đề đúng trong các mệnh đề sau:

A. \(\lim {u_n} = \sqrt 2  + {(\sqrt 2 )^2} + ... + {(\sqrt 2 )^n}+... \) \(= {{\sqrt 2 } \over {1 - \sqrt 2 }}\)

B. \(\lim u_n = -∞\)

C. \(\lim u_n= +∞\)

D. Dãy số \((u_n)\) không có giới hạn khi \(n \rightarrow +∞\)

Phương pháp giải - Xem chi tiết

Tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1\) và công bội \(q \) là: \({{{u_1}(1 - {q^n})} \over {1 - q}}\)

Lời giải chi tiết

+ Ta có \((u_n)\) là tổng \(n\) số hạng đầu tiên của một cấp số nhân có số hạng đầu là \(u_1= \sqrt 2\) và công bội \(q = \sqrt 2\) nên:

\(\eqalign{
& {u_n} = {{{u_1}(1 - {q^n})} \over {1 - q}} = {{\sqrt 2 \left[ {1 - {{(\sqrt 2 )}^n}} \right]} \over {1 - \sqrt 2 }}\cr&= {{\sqrt 2 \left[ {{{(\sqrt 2 )}^n} - 1} \right]} \over {\sqrt 2 - 1}} \cr
& \Rightarrow \lim {u_n} = \lim {{\sqrt 2 } \over {\sqrt 2 - 1}}.\left[ {{{(\sqrt 2 )}^n} - 1} \right] \cr} \)

Vì \(\sqrt 2 > 1\) nên \(\lim{[(\sqrt 2)^n -1]}= + ∞ ; \, {{\sqrt 2 } \over {\sqrt 2 - 1}} > 1\);

  \(\Rightarrow \lim {u_n} = +∞\)

Chọn đáp án C.

Chú ý:

Đây không phải cấp số nhân lùi vô hạn nên không áp dụng công thức A được.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved