Đề bài
Người ta thiết kế một tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích mặt đế tháp là \(12 288\) \(m^2\). Tính diện tích mặt trên cùng.
Phương pháp giải - Xem chi tiết
Diện tích các mặt lập thành một cấp số nhân. Sử dụng công thức SHTQ của CSN: \({u_n} = {u_1}.{q^{n - 1}}\).
Lời giải chi tiết
Gọi diện tích đáy tháp là S0; diện tích mặt trên của tầng 1; tầng 2; tầng 3; … lần lượt là \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }} \ldots ;{\rm{ }}{S_{11}}.\)
Ta có:
Diện tích đế tháp: \({S_0} = 12288\,{m^2}\)
Diện tích tầng 1: \({S_1} = \frac{1}{2}{S_0} = \frac{1}{2}.12288\,{m^2} = 6144\,{m^2}\)
Theo giả thiết diện tích của bề mặt trên mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới.
Do đó \((S_n)\) là CSN có số hạng đầu \({S_1} = 6144\,{m^2}\) công bội \(q = \frac{1}{2}\).
Diện tích tầng 11 là \({S_{11}} = {S_1}{q^{10}} = 6144.{\left( {\frac{1}{2}} \right)^{10}} = 6\,{m^2}\)
ĐỀ CƯƠNG HỌC KÌ 1 - SINH 11
Chủ đề 2: Kĩ thuật chuyền, bắt bóng và đột phá
CHƯƠNG VII - MẮT. CÁC DỤNG CỤ QUANG
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
Chủ đề 3. Điện trường
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11