GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Bài 1.51 trang 20 SBT Giải tích 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

\(y =  - {x^4} + 2{x^2} + 2\)

Lời giải chi tiết:

+) TXĐ: \(D = \mathbb{R}\).

+) Chiều biến thiên:

\(\mathop {\lim }\limits_{x \to  \pm \infty } y =  - \infty \)

\(\begin{array}{l}y' =  - 4{x^3} + 4x\\y' = 0 \Leftrightarrow  - 4{x^3} + 4x = 0\\ \Leftrightarrow  - 4x\left( {{x^2} - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  \pm 1\end{array} \right.\end{array}\)

BBT:

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).

Hàm số nghịch biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).

Hàm số đạt cực đại tại \(x =  \pm 1,{y_{CD}} = 3\)

Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 2\).

+) Đồ thị:

Trục đối xứng: \(Oy\).

Đồ thị hàm số cắt trục tung tại điểm \(\left( {0;2} \right)\).

Điểm cực tiểu \(\left( {0;2} \right)\) và điểm cực đại \(\left( { - 1;3} \right),\left( {1;3} \right)\).

LG b

Chứng minh rằng với mọi m < 2, phương trình

\( - {x^4} + 2{x^2} + 2 - m = 0\)

Có hai nghiệm.

Lời giải chi tiết:

Ta có:

\( - {x^4} + 2{x^2} + 2 - m = 0\) \( \Leftrightarrow  - {x^4} + 2{x^2} + 2 = m\)

Số nghiệm của phương trình bằng số giao điểm của đồ thị (C ) với đường thẳng \(y = m\).

Với \(m < 2\), từ đồ thị ta thấy đường thẳng \(y = m\) cắt đồ thị tại đúng 2 điểm.

Vậy phương trình đã cho có 2 nghiệm phân biệt khi \(m < 2\).

LG c

Từ đồ thị (C) của hàm số đã cho suy ra cách vẽ đồ thị của hàm số

\(y = \left| { - {x^4} + 2{x^2} + 2} \right|\)

Lời giải chi tiết:

+) Giữ nguyên phần của (C) nằm phía trên trục hoành

+) Lấy đối xứng phần của (C) nằm phía dưới trục hoành qua trục hoành

Ta được đồ thị hàm số \(y = \left| { - {x^4} + 2{x^2} + 2} \right|\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved