Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Cho hình lăng trụ tam giác đều ABC.A’B’C’ cạnh đáy bằng a. Lấy điểm B1 thuộc BB’, điểm C1 thuộc CC’. Đặt \(B{B_1} = x,C{C_1} = y\).
a) Tam giác AB1C1 có thể vuông ở A được không? Tìm hệ thức liên hệ giữa a, x, y để AB1C1 là tam giác vuông tại B1.
b) Giả sử AB1C1 là tam giác thường và B1 là trung điểm của BB’, y = 2x và α là góc giữa mp(ABC) và mp(AB1C1). Hãy tính diện tích tam giác AB1C1 và độ dài cạnh bên của hình lăng trụ đã cho.
Lời giải chi tiết
a) ● Tam giác AB1C1 vuông ở A khi và chỉ khi
\({B_1}C_1^2 = AB_1^2 + AC_1^2\)
Mặt khác
\(\eqalign{ & {B_1}C_1^2 = {a^2} + {\left( {x - y} \right)^2} \cr & AB_1^2 = {a^2} + {x^2} \cr & AC_1^2 = {a^2} + {y^2} \cr} \)
Do đó tam giác AB1C1 vuông ở A khi và chỉ khi
\(\eqalign{ & {a^2} + {\left( {x - y} \right)^2} = 2{{\rm{a}}^2} + {x^2} + {y^2} \cr & \Leftrightarrow 2{\rm{x}}y = - {a^2} \cr} \)
Điều này không xảy ra. Vậy tam giác AB1C1 không thể vuông tại A được.
● Tam giác AB1C1 vuông tại B1 khi và chỉ khi
\(\eqalign{ & AC_1^2 = AB_1^2 + {B_1}C_1^2 \cr & \Leftrightarrow {a^2} + {y^2} = {a^2} + {x^2} + {a^2} + {\left( {x - y} \right)^2} \cr & \Leftrightarrow 2{\rm{x}}y = 2{{\rm{x}}^2} + {a^2} \cr} \)
Đó là hệt thức liên hệ giữa a, x, y để tam giác AB1C1 vuông tại B1.
b) Khi B1 là trung điểm của BB’, y = 2x thì C1 trùng với C’.
Gọi \(I = BC \cap {B_1}C'\) thì \(AI = \left( {A{B_1}C'} \right) \cap \left( {ABC} \right)\).
Vì \({B_1}B = {1 \over 2}BB'\) nên BI = BC, từ đó ta có IAC là tam giác vuông tại A, tức là \(AC \bot AI\).
Mặt khác, \(C'C \bot \left( {ABC} \right)\) nên \(AC' \bot AI\) (định lí ba đường vuông góc).
Như vậy \(\widehat {C'AC}\) là góc giữa mp(AB1C’) và mp(ABC).
Theo giả thiết thì \(\widehat {C'AC} = \alpha \)
Từ đó \({S_{ABC}} = {S_{A{B_1}{C_1}}}\cos \alpha \)
tức là \({S_{A{B_1}{C_1}}} = {{{S_{ABC}}} \over {\cos \alpha }}\)
Như vậy \({S_{A{B_1}{C_1}}} = {{{a^2}\sqrt 3 } \over {4\cos \alpha }}\)
Ta có: \(CC' = AC\tan \alpha = a\tan \alpha \)
Vậy độ dài cạnh bên của hình lăng trụ đã cho là \(a\tan \alpha \).
Unit 2: Vietnam and ASEAN
Chuyên đề 11.3: Cuộc Cách mạng công nghiệp lần thứ tư (4.0)
Giáo dục kinh tế
Tóm tắt, bố cục, nội dung chính các tác phẩm SGK Văn 11 - Tập 1
Skills (Units 5 - 6)
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11