Xác định tâm vị tự trong và tâm vị tự ngoài của hai đường tròn trong các trường hợp sau :
LG a
Hai đường tròn tiếp xúc ngoài với nhau
Phương pháp giải:
Cách xác định tâm vị tự:
- Lấy điểm \(M\) thuộc đường tròn \((O)\).
- Qua \(O'\) kẻ đường thẳng song song với \(OM\), đường thẳng này cắt đường tròn \((O')\) tại \(M'\) và \(M''\).
- Hai đường thẳng \(MM'\) và \(MM''\) cắt đường thẳng \(OO'\) theo thứ tự \(I\) và \(I'\).
Khi đó, \(I\) và \(I'\) là các tâm vị tự cần tìm.
Lời giải chi tiết:
Gọi I là tâm vị tự ngoài, I’ là tâm vị tự trong của hai đường tròn \((O)\) và \((O’)\)
Nếu \((O)\) và \((O’)\) tiếp xúc ngoài thì tiếp điểm I’ là tâm vị tự trong, giao điểm của OO’ với tiếp tuyến chung ngoài của \((O)\) và \((O’)\) (nếu có) là tâm vị tự ngoài (h.a)
LG b
Hai đường tròn tiếp xúc trong với nhau
Lời giải chi tiết:
Nếu \((O)\) và \((O’)\) tiếp xúc trong thì tiếp điểm I là tâm vị tự ngoài, tâm vị tự trong I’ xác định như hình vẽ b)
LG c
Một đường tròn chứa đường tròn kia
Lời giải chi tiết:
Nếu \((O')\) chứa \((O)\) thì xác định I và I’ như hình vẽ (đặc biệt, khi O trùng O’ thì I và I’ trùng O)
Unit 7: Artists
Chương 2: Nitrogen và sulfur
Phần hai: Giáo dục pháp luật
Đề cương ôn tập học kì 2
Phần một. Một số vấn đề về kinh tế - xã hội thế giới
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11