Bài 1, 2. Mở đầu về phép biến hình. Phép tịnh tiến và phép dời hình
Bài 3. Phép đối xứng trục
Bài 4. Phép quay và phép đối xứng tâm
Bài 5. Hai hình bằng nhau
Bài 6, 7. Phép vị tự. Phép đồng dạng
Ôn tập chương I. Phép dời hình và phép đồng dạng
Bài tập trắc nghiệm chương I. Phép dời hình và phép đồng dạng
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
Bài 2, 3, 4. Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc
Bài 5. Khoảng cách
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
Bài tập trắc nghiệm chương III. Vecto trong không gian. Quan hệ vuông góc
Đề bài
Trong mặt phẳng (P) cho hai điểm A và B phân biệt. Đoạn thẳng SA vuông góc với mặt phẳng (P). Gọi ∆ là đường thẳng nằm trong (P) và đi qua điểm B, H là chân đường vuông góc kẻ từ điểm S đến ∆.
a) Chứng minh rằng điểm H thuộc một đường tròn cố định khi ∆ thay đổi.
b) Gọi AK là đường cao của tam giác SAH; AI là đường cao của tam giác SAB. Chứng minh rằng điểm K thuộc đường tròn cố định khi ∆ thay đổi. Xác định vị trí của đường thẳng ∆ để diện tích tam giác AKI đạt giá trị lớn nhất.
c) Hãy xác định vị trí của đường thẳng ∆ để độ dài SH đạt giá trị lớn nhất hoặc bé nhất.
Lời giải chi tiết
Vì \(SA \bot \left( P \right),\Delta \subset \left( P \right),SH \bot \Delta \) nên \(AH \bot HB\) (định lí ba đường vuông góc). Như vậy \(\widehat {AHB} = {90^0}\). Do A, B cố định thuộc (P), H ∈ (P) nên điểm H thuộc đường tròn đường kính AB cố định trong (P).
b) Vì \(HB \bot \left( {SAH} \right)\) nên \(HB \bot AK\), mặt khác \(AK \bot SH\) nên \(AK \bot \left( {SHB} \right)\).
Vậy \(AK \bot SI\). Do giả thiết \(AI \bot AB\), từ đó \(SB \bot \left( {AKI} \right)\)
S, B, A là các điểm cố định nên mp(AKI) cố định và I cố định.
Do \(AK \bot \left( {SHB} \right)\) nên \(AK \bot KI\). Vậy K thuộc đường tròn đường kính AI trong mặt phẳng (AKI) cố định nói trên. Đó chính là đường tròn cố định chứa điểm K.
- Đặt \(\widehat {ABH} = \alpha \) thì
\(AH = AB\sin \alpha = 2{\rm{R}}\sin \alpha \,\,\,\,\,\,\,\,\,\left( {AB = 2{\rm{R}}} \right)\).
Ta có tam giác AKI vuông tại K với cạnh huyền AI cố định, từ đó diện tích tam giác AKI đạt giá trị lớn nhất khi và chỉ khi AKI là tam giác vuông cân, lúc đó \(AK = {{AI} \over {\sqrt 2 }}\).
Mặt khác \({1 \over {A{K^2}}} = {1 \over {{\rm{A}}{{\rm{S}}^2}}} + {1 \over {A{H^2}}} = {1 \over {{h^2}}} + {1 \over {4{{\rm{R}}^2}{{\sin }^2}\alpha }}\).
hay \({2 \over {A{I^2}}} = {1 \over {{h^2}}} + {1 \over {4{R^2}{{\sin }^2}\alpha }}\,\,\,\,\,\,\,\,\,\,\,\,\left( {h = SA} \right)\) .
Vì AI là đường cao của tam giác vuông SAB nên
\({1 \over {A{I^2}}} = {1 \over {{h^2}}} + {1 \over {4{R^2}}}.\)
Vậy \({S_{AKI}}\) đạt giá trị lớn nhất khi α thỏa mãn điều kiện
\(\eqalign{ & {2 \over {{h^2}}} + {2 \over {4{{\rm{R}}^2}}} = {1 \over {{h^2}}} + {1 \over {4{{\rm{R}}^2}{{\sin }^2}\alpha }} \cr & \Leftrightarrow {1 \over {{h^2}}} + {2 \over {4{{\rm{R}}^2}}} = {1 \over {4{{\rm{R}}^2}{{\sin }^2}\alpha }} \cr & \Leftrightarrow {{4{R^2} + 2{h^2}} \over {{h^2}}} = {1 \over {{{\sin }^2}\alpha }} \cr & \Leftrightarrow \sin \alpha = {h \over {\sqrt {4{R^2} + 2{h^2}} }} \cr} \)
Như vậy, có hai vị trí của đường thẳng ∆ để \({S_{AKI}}\) đạt giá trị lớn nhất.
c) Ta có SH lớn nhất khi và chỉ khi AH lớn nhất, điều này xảy ra khi AH trùng AB. Vậy nếu ∆ trong (P) vuông góc với AB tại B thì SH đạt giá trị lớn nhất.
SH đạt giá trị bé nhất khi và chỉ khi AH đạt giá trị bé nhất, điều này xảy ra khi H trùng với điểm A, tức là ∆ trùng với đường thẳng AB.
Chủ đề 4: Chiến thuật thi đấu cơ bản
Unit 2: Express Yourself
Chuyên đề 1: Lịch sử nghệ thuật truyền thống Việt Nam
1. Bài 1: Kĩ thuật đá móc cầu bằng mu bàn chân (cúp ngược)
Chương II. Sóng
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11