Câu 38 trang 121 Sách bài tập Hình học 11 Nâng cao

Đề bài

Trong mặt phẳng (P) cho đường tròn (C) đường kính AC = 2R. Gọi H là điểm thuộc AC (0 < AH < 2R). Một đường thẳng ∆ đi qua H cắt đường tròn (C) tại hai điểm B và D. Gọi S là điểm cố định sao cho SA vuông góc với (P), đặt SA = h. Một mặt phẳng (Q) đi qua điểm A và vuông góc với SC cắt các đường thẳng SB, SC, SD, SH lần lượt tại các điểm B1, C1, D1, H1.

a) Chứng minh rằng tứ giác AB1C1D1 nôi tiếp một đường tròn.

b) Đường thẳng ∆ phải thỏa mãn điều kiện gì để H1 là trung điểm của B1D1?

c) Đường thẳng ∆ phải thỏa mãn điều kiện gì để AB1C1D1 là hình vuông?

Lời giải chi tiết

 

a) Vì (Q) qua A và \(\left( Q \right) \bot SC\) nên \(A{B_1} \bot SC\).

Mặt khác dễ thấy \(BC \bot \left( {SAB} \right)\) nên \(BC \bot A{B_1}\).

Vậy \(A{B_1} \bot mp\left( {SBC} \right)\), tức là \(A{B_1} \bot {B_1}{C_1}\).

Tương tự như trên, ta có \(A{{\rm{D}}_1} \bot {D_1}{C_1}.\)

Do đó, tứ diện AB1C1D1 nội tiếp đường tròn.

b)

 

 Do tứ giác AB1C1D1 nội tiếp đường tròn đường kính AC1 mà AC1 cắt B1D1, tại H1 nên H1 là trung điểm của B1D1, khi đó xảy ra một trong hai trường hợp sau:

- Trường hợp 1: \({B_1}{D_1} \bot A{C_1}\) tại H1 (Hình 1)

- Trường hợp 2: B1D1 qua trung điểm H1 của AC1 (Hình 2)

Xét trường hợp 1

Vì \({B_1}{D_1} \bot A{C_1}\) nên \(A{B_1} = A{{\rm{D}}_1}\)

Mặt khác \(A{B_1},A{{\rm{D}}_1}\) là hai đường cao của hai tam giác vuông SAB và SAD nên

\(A{B_1} = A{{\rm{D}}_1} \Leftrightarrow AB = A{\rm{D}}\)

(Vì \({1 \over {A{S^2}}} + {1 \over {A{B^2}}} = {1 \over {AB_1^2}}\) và \({1 \over {A{S^2}}} + {1 \over {A{D^2}}} = {1 \over {AD_1^2}}\))

Lại có AC là đường kính của (C) nên

\(AB = A{\rm{D}} \Leftrightarrow {\rm{BD}} \bot AC\).

Vậy nếu đường thẳng ∆ vuông góc với AC tại H mà 0 < AH < AC thì H1 là trung điểm của B1D1.

Xét trường hợp 2 (Hình 3)

Kẻ C1K // H1H, do H1 là trung điểm của AC1 nên AH = HK = x, từ đó CK = 2R – 2x. Khi đó

\(\eqalign{  & {{2{\rm{R}} - 2{\rm{x}}} \over {2{\rm{R}} - x}} = {{CK} \over {CH}} = {{C{C_1}} \over {C{\rm{S}}}}  \cr  &  = {{C{C_1}.C{\rm{S}}} \over {C{{\rm{S}}^2}}} = {{A{C^2}} \over {C{{\rm{S}}^2}}} = {{4{{\rm{R}}^2}} \over {{h^2} + 4{R^2}}}  \cr  &  \Leftrightarrow \left( {R - x} \right)\left( {{h^2} + 4{{\rm{R}}^2}} \right) = 2{R^2}\left( {2{\rm{R}} - x} \right)  \cr  &  \Leftrightarrow x = {{R{h^2}} \over {{h^2} + 2{{\rm{R}}^2}}} \cr} \)

Dễ thấy 0 < x < 2R

Vậy nếu đường thẳng ∆ quay quanh điểm H mà H được xác định bởi

\(AH = x = {{R{h^2}} \over {{h^2} + 2{{\rm{R}}^2}}},H \in AC\)

thì H1 là trung điểm của B1D1

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved