Đề bài
a) Thử lại rằng :\(x = {A_1}\cos \omega t + {A_2}\sin \omega t\) (6.14) trong đó A1 và A2 là hai hằng số bất kì cũng là nghiệm của phương trình (6.3).
b) Chứng tỏ rằng, nếu chọn A1 và A2 trong biểu thức ở vế trái của (6.14) như sau: \({A_1} = A\cos \varphi ;{A_2} = - A\sin \varphi \) thì biểu thức ấy trùng với biểu thức ở vế phải của (6.4).
Lời giải chi tiết
a) Ta có :
\(x = {A_1}\cos \omega t + {A_2}\sin \omega t \Rightarrow x' = - {A_1}\omega \sin \omega t + {A_2}\omega \cos \omega t.\)
\(x" = - {A_1}{\omega ^2}\cos \omega t - {A_2}{\omega ^2}\sin \omega t.\)
Ta được :
\(\eqalign{& x" + {\omega ^2}x = - {A_1}{\omega ^2}\cos \omega t - {A_2}{\omega ^2}sin\omega t + {\omega ^2}({A_1}\cos \omega t + {A_2}\sin \omega t) \cr
& \Rightarrow x" + {\omega ^2}x = - {A_1}{\omega ^2}\cos \omega t - {A_2}{\omega ^2}sin\omega t + {A_1}{\omega ^2}\cos \omega t + {A_2}{\omega ^2}sin\omega t = 0. \cr} \)
Vậy :\(x = {A_1}\cos \omega t + {A_2}\sin \omega t\) là nghiệm của phương trình \(x" + {\omega ^2}x = 0.\)
b) Nếu chọn \({A_1} = A\cos \varphi \) và \({A_2} = - A\sin \varphi \) thì
\(\eqalign{& x = {A_1}\cos \omega t + {A_2}\sin \omega t = A\cos \varphi cos\omega t - A\sin \varphi \sin \omega t \cr & = A(\cos \varphi cos\omega t - \sin \varphi \sin \omega t) \cr & \Rightarrow x = Acos\left( {\omega t + \varphi } \right). \cr} \)
Một số vấn đề phát triển và phân bố các ngành dịch vụ
Chương 8. Nhận biết một số chất vô cơ
Đề kiểm tra 45 phút - Chương 4 – Hóa học 12
PHẦN 6: TIẾN HÓA
Vấn đề sử dụng và bảo vệ tự nhiên