Đề bài
Cho hai hình bình hành ABCD VÀ ABEF nằm trong hai mặt phẳng khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC, BF sao cho MC = 2AM, NF = 2BN. Qua M, N, kẻ các đường thẳng song song với AB cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:
a. MN // DE
b. M1N1 // mp(DEF)
c. mp(MNN1M1) // mp(DEF)
Lời giải chi tiết
a. Gọi O là tâm hình bình hành ABCD, ta có AO là trung tuyến và
⇒ M là trọng tâm của tam giác ABD , tương tự N là trọng tâm tam giác ABE
Gọi I là trung điểm của AB thì M, N lần lượt trên DI và EI
Trong tam giác IDE ta có:
b. Trong ∆FAB: NN1 // AB ⇒
Trong ∆DAC: MM1 // CD ⇒
Do đó
Mà DF ⊂ (DEF) suy ra M1N1 // mp(DEF)
c. Ta có : M1N1 // DF , NN1 // EF
mà M1N1 và NN1 cắt nhau và nằm trong mp(MNN1M1), còn DF và EF cắt nhau và nằm trong mp(DEF)
Vậy mp(MNN1M1) // mp(DEF)
Review Unit 2
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
Chương IV. Dòng điện. Mạch điện
Chuyên đề 2: Một số vấn đề về pháp luật dân sự
Chương 2: Nitrogen và sulfur
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11