Đề bài
Ta gọi phần nguyên của số thực x là số nguyên lớn nhất không lớn hơn x và kí hiệu nó là \(\left[ x \right].\)
Chẳng hạn \(\left[ 5 \right] = 5;\left[ {3,12} \right] = 3;\left[ { - 2,725} \right] = - 3.\) vẽ đồ thị ghàm số \(y = \left[ x \right]\) và tìm
\(\mathop {\lim }\limits_{x \to {3^ + }} \left[ x \right],\mathop {\lim }\limits_{x \to {3^ - }} \left[ x \right]\) và \(\mathop {\lim }\limits_{x \to 3} \left[ x \right]\) (nếu có).
Lời giải chi tiết
Đồ thị (h.4.2).Với \(2 < x<3;\left[ x \right] = 2\) ; do đó \(\mathop {\lim }\limits_{x \to {3^ - }} \left[ x \right] = 2.\)
Với \(3 < x < 4,\left[ x \right] = 3\) ; do đó \(\mathop {\lim }\limits_{x \to 3 ^+ } \left[ x \right] = 3.\)
Vì \(\mathop {\lim }\limits_{x \to {3^ - }} \left[ x \right] \ne \mathop {\lim }\limits_{x \to {3^ + }} \left[ x \right]\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 3} \left[ x \right]\).
Chuyên đề 11.1: Một số vấn đề về khu vực Đông Nam Á
Bài 8. Lợi dụng địa hình, địa vật
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
SBT Toán 11 - Chân trời sáng tạo tập 1
Unit 6: Social issues
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11