Tìm các giới hạn sau
LG a
\(\mathop {\lim }\limits_{x \to 2} {{3 - \sqrt {2x + 5} } \over {\sqrt {x + 2} - 2}}\)
Phương pháp giải:
Giải tương tự như bài 59e).
Lời giải chi tiết:
\( - {4 \over 3}\)
LG b
\(\mathop {\lim }\limits_{x \to 2} {{\sqrt {4{x^2} + 5} - \sqrt {3{x^2} + 4x + 1} } \over {{x^2} + 5x - 14}}\)
Lời giải chi tiết:
0;
LG c
\(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {3{x^2} + 1} + x\sqrt 3 } \right)\)
Lời giải chi tiết:
0;
LG d
\(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - 2x} \right)\sqrt {{{3x - 1} \over {{x^3} + 1}}} .\)
Lời giải chi tiết:
Vì \(1 - 2x < 0\) với mọi \(x > {1 \over 2}\) nên
\(1 - 2x = - \sqrt {{{\left( {1 - 2x} \right)}^2}} \) với mọi \(x > {1 \over 2}\).
Do đó
\(\left( {1 - 2x} \right)\sqrt {{{3x - 1} \over {{x^3} + 1}}} = - \sqrt {{{{{\left( {1 - 2x} \right)}^2}\left( {3x - 1} \right)} \over {{x^3} + 1}}} \)
Và
\(\mathop {\lim }\limits_{x \to + \infty } \left( {1 - 2x} \right)\sqrt {{{3x - 1} \over {{x^3} + 1}}} = - 2\sqrt 3 .\)
Chủ đề 2: Kĩ thuật chuyền, bắt bóng và đột phá
Unit 9: The Post Office - Bưu điện
Chương 5. Một số cuộc cải cách lớn trong lịch sử Việt Nam (trước năm 1858)
Unit 7: Independent living
HÌNH HỌC-SBT TOÁN 11 NÂNG CAO
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11