GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO
GIẢI TÍCH SBT - TOÁN 12 NÂNG CAO

Câu 4.9 trang 178 sách bài tập Giải tích 12 Nâng cao

Đề bài

Cho A, B, C, D là bốn điểm trong mặt phẳng phức biểu diễn theo thứ tự các số:

1+i1i2i, 22i,

Tìm các số  z1,z2,z3,z4 theo thứ tự biểu diện bởi các vectơ AC,AD,BC,BD. Tính z1z2,z3z4 và từ đó suy ra A, B, C, D cùng nằm trên một đường tròn (Xem bài tập 4.8). Tâm đường tròn đó biểu diễn số phức nào?

Lời giải chi tiết

AC biểu diễn số phức z1=1+i,(AD biểu diễn số phức z2=33i, doz1z2=1+i33i=i3 nên AC.AD=0 (xem bài tập 4.8)

BC biểu diễn số phức z3=1+3i,(BD biểu diễn số phức z4=3i.

Do z3z4=1+3i3i=i nên BC.BD=0 (xem bài tập 4.8)

Vậy CD là một đường kính của đường tròn đi qua bốn điểm A, B, C, D. Tâm đường tròn đó là trung điểm CD nên nó biểu diễn số 2i+(22i)2=1                                       

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved