Câu 6 trang 120 SGK Hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Nhắc lại định nghĩa:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Góc giữa đường thẳng và mặt phẳng.

Phương pháp giải:

Xem lại lý thuyết bài 

Đường thẳng vuông góc với mặt phẳng

.

Lời giải chi tiết:

Góc giữa đường thẳng và mặt phẳng

Định nghĩa: Cho đường thẳng \(d\) và mặt phẳng \((\alpha)\).

Trường hợp đường thẳng \(d\) vuông góc với mặt phẳng \((\alpha)\) thì ta nói rằng góc giữa đường thẳng \(d\) và mặt phẳng \((\alpha)\) bằng \(90^0\).

Trường hợp đường thẳng \(d\) không vuông góc với mặt phẳng \((\alpha)\) thì góc giữa \(d\) và hình chiếu \(d'\) của nó trên \(\alpha\) gọi là góc giữa đường thẳng \(d\) và mặt phẳng \((\alpha)\).

- Nếu \(d \, //\left( \alpha  \right)\) hoặc \(d \subset \left( \alpha  \right)\) thì góc giữa \(d\) và mặt phẳng \((\alpha)\) bằng \(0^0\).

LG b

Góc giữa hai mặt phẳng.

Phương pháp giải:

Xem lại lý thuyết bài 

Hai mặt phẳng vuông góc

.

Lời giải chi tiết:

Góc giữa hai mặt phẳng

Định nghĩa: Giả sử hai mặt phẳng \((α)\) và \((β)\) cắt nhau theo giao tuyến \(c\). Từ điểm \(I\) bất kì trên \(c\), trong mặt phẳng \((α)\) ta dựng  đường thẳng \(a\) vuông góc với \(c\) và trong mặt phẳng \((β)\) ta dựng đường thẳng \(b\) vuông góc với \(c\). Ta gọi góc giữa hai đường thẳng \(a\) và \(b\) là góc giữa hai mặt phẳng  \((α)\) và \((β)\).

Nếu \(\left( \alpha  \right)//\left( \beta  \right)\) hoặc \(\left( \alpha  \right)\equiv \left( \beta  \right)\) thì góc giữa hai mặt phẳng bằng \(0^0\).

Chú ý: góc giữa hai mặt phẳng luôn luôn nhỏ hơn hoặc bằng \(90^0\).

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved