Đề bài
Trong mặt phẳng tọa độ , xét các phép biến hình sau đây:
- Phép biến hình \({F_1}\) biến mỗi điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {y; - x} \right)\)
- Phép biến hình \({F_2}\) biến mỗi điểm \(M\left( {x;y} \right)\) thành điểm \(M'\left( {2x;y} \right)\)
Trong hai phép biến hình trên, phép nào là phép dời hình ?
Lời giải chi tiết
Lấy hai điểm bất kì \(M = ({x_1};{\rm{ }}{y_1})\) và \(N({x_2};{y_2})\) khi đó
\(MN = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \)
Ảnh của M, N qua F1 lần lượt là \(M' = ({y_1}; - {x_1})\) và \(N' = ({y_2}; - {x_2})\)
Như vậy ta có:
\(M'N' = \sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( { - {x_2} + {x_1}} \right)}^2}} \)
\( = \sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} \)
Suy ra \(M’N’ = MN\), vậy F1 là phép dời hình
Ảnh của M, N qua F2 lần lượt là \(M'' = (2{x_1};{\rm{ }}{y_1})\) và \(N'' = (2{x_2};{y_2})\)
Như vậy ta có:
\(\begin{array}{l}
M''N'' = \sqrt {{{\left( {2{x_2} - 2{x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \\
= \sqrt {4{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
\end{array}\)
Từ đó suy ra : nếu \({x_1} \ne {x_2}\) thì \(M’'N’'≠ MN\), vậy F2 không phải là phép dời hình
Phần hai: Giáo dục pháp luật
Review 2
Unit 2: Personnal Experiences - Kinh nghiệm cá nhân
Bài 5. Tiết 2: Một số vấn đề của Mĩ La Tinh - Tập bản đồ Địa lí 11
Chủ đề 5: Đạo đức kinh doanh
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11