Viết phương trình tiếp tuyến:
LG a
Của hypebol \(y = {{x + 1} \over {x - 1}}\) tại \(A (2, 3)\)
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
Lời giải chi tiết:
Ta có: \(y' = f'(x) = {{ - 2} \over {{{(x - 1)}^2}}} \Rightarrow f'(2) = {{ - 2} \over {{{(2 - 1)}^2}}} = - 2\)
Suy ra phương trình tiếp tuyến cần tìm là:
\(y = - 2\left( {x - 2} \right) + 3 = - 2x + 7\)
LG b
Của đường cong \(y = x^3+ 4x^2– 1\) tại điểm có hoành độ \(x_0= -1\)
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
Lời giải chi tiết:
Ta có: \(y’ = f’(x) = 3x^2+ 8x ⇒ f’(-1) = 3 – 8 = -5\)
Mặt khác: \(x_0= -1 ⇒ y_0= -1 + 4 – 1 = 2\)
Vậy phương trình tiếp tuyến cần tìm là:
\(y – 2 = -5 (x + 1) ⇔ y = -5x – 3\)
LG c
Của parabol \(y = x^2– 4x + 4\) tại điểm có tung độ \(y_0= 1\)
Phương pháp giải:
Từ \(y_0=1\) tính được các giá trị của hoành độ \(x_0\)
Sau đó viết phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x_0\): \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\).
Lời giải chi tiết:
Ta có:
\(y_0= 1 ⇒ 1 = x_0^2- 4x_0+ 4 ⇒ x_0^2– 4x_0+ 3 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}
{x_0} = 1\\
{x_0} = 3
\end{array} \right.\)
\(f’(x) = 2x – 4 ⇒ f’(1) = -2\) và \(f’(3) = 2\)
Vậy có hai tiếp tuyến cần tìm có phương trình là:
\(y – 1 = -2 (x – 1) ⇔ y = -2x + 3\)
\(y – 1 = 2 (x – 3) ⇔ y = 2x – 5\)
Bài 5. Kiến thức phổ thông về phòng không nhân dân
Chủ đề 1. Xây dựng và phát triển nhà trường
Tải 10 đề kiểm tra 1 tiết - Chương 1
Chuyên đề 2: Làm quen với một vài khái niệm của lí thuyết đồ thị
Chuyên đề III. Một số yếu tố vẽ kĩ thuật
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11