Đề bài
Cho ba đường thẳng a, b, c không cùng nằm trong một mặt phẳng sao cho chúng đôi một cắt nhau. Chứng minh rằng chúng đồng quy
Lời giải chi tiết
Gọi \(I =a\cap b\) \( \Rightarrow \left\{ \begin{array}{l}
I \in {a}\\
I \in {b}
\end{array} \right.\)
Ta chứng minh \(I ∈ c\). Thật vậy,
Gọi (β) là mặt phẳng chứa hai đường thẳng cắt nhau \(a,c\).
\((\gamma)\) là mặt phẳng chứa hai đường thẳng cắt nhau \(b,c\).
Do ba đường thẳng không cùng nằm trong một mặt phẳng nên (β) và \((\gamma)\) phân biệt.
Ngoài ra
\(\left\{ \begin{array}{l}
{c} \subset \left( \beta \right)\\
{c} \subset \left( \gamma \right)
\end{array} \right. \Rightarrow \left( \beta \right) \cap \left( \gamma \right) = {c}\)
\(I ∈ a\subset \left( \beta \right) \Rightarrow I ∈ (β) = (a,c)\)
\(I ∈ b\subset \left( \gamma \right) \Rightarrow I ∈ (\gamma) = (b,c)\)
Từ đó suy ra, \(I ∈(\beta ) \cap (\gamma )=c\).
Cách khác:
Gọi \(\left( P \right)\) là mặt phẳng chứa hai đường thẳng cắt nhau \(b\) và \(c\).
Gọi
\(\begin{array}{l}I = a \cap b \Rightarrow I \in b \subset \left( P \right)\\J = a \cap c \Rightarrow J \in c \subset \left( P \right)\end{array}\)
Nếu \(I,J\) phân biệt thì \(a\) đi qua cả \(I\) và \(J\) hay \(a \equiv IJ \subset \left( P \right)\)
Do đó \(a,b,c\) cùng nằm trong \(\left( P \right)\) (mâu thuẫn)
Do đó \(I \equiv J\) là điểm thuộc cả \(a,b,c\).
Vậy \(a,b,c\) đồng qui.
Chủ đề 3. Điện trường
Unit 5: Vietnam and ASEAN
Chủ đề 1: Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
Đề cương ôn tập học kì 1 - Vật lí 11
Chủ đề 1. Giới thiệu chung về cơ khí chế tạo
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Lớp 11