ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11

Câu hỏi 1 trang 123 SGK Đại số và Giải tích 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Xét hàm số:

\(\displaystyle f(x) = {{2{x^2} - 2x} \over {x - 1}}\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Cho biến \(x\) những giá trị khác 1 lập thành dãy số \({x_n},{\rm{ }}{x_n}\; \to {\rm{ }}1\) như trong bảng sau:

Khi đó, các giá trị tương ứng của hàm số

\(f({x_1}),{\rm{ }}f({x_2}), \ldots ,{\rm{ }}f({x_n}),{\rm{ }} \ldots \)

cũng lập thành một dãy số mà ta kí hiệu là \((f({x_n})).\)

a) Chứng minh rằng \(f\left( {{x_n}} \right) = 2{x_n} = \dfrac{{2n + 2}}{n}\)

b) Tìm giới hạn của dãy số \((f({x_n})).\)

Phương pháp giải:

a) Tính và rút gọn \(f\left( {{x_n}} \right)\) suy ra đáp số, chú ý \(x_n=\dfrac{{n + 1}}{n}\).

b) Xét giới hạn \(\displaystyle \mathop {\lim }\limits_{n \to + \infty } (f({x_n}) - 2)\) và suy ra đáp số.

Lời giải chi tiết:

a) \(\displaystyle f({x_n}) = {{2{x_n}^2 - 2{x_n}} \over {{x_n} - 1}} = {{2{x_n}({x_n} - 1)} \over {{x_n} - 1}} \) \(= 2{x_n}\)

\(\displaystyle {x_n} = {{n+1} \over {n}} \) \(\displaystyle \Rightarrow f({x_n}) = 2{x_n} = 2.{{n+1} \over {n}} = {{2n+2} \over {n}}\)

b) \(\displaystyle \mathop {\lim }\limits_{n \to + \infty } (f({x_n}) - 2) \) \(\displaystyle = \mathop {\lim }\limits_{n \to + \infty } ({{2n+2} \over {n}} - 2) = \mathop {\lim }\limits_{n \to + \infty } {{ 2} \over {n}}\)

Ta có: \(\displaystyle \mathop {\lim }\limits_{n \to + \infty } {{ 2} \over {n}} = 0 \) \(\displaystyle \Rightarrow \mathop {\lim }\limits_{n \to + \infty } (f({x_n}) - 2) = 0 \) \(\displaystyle \Rightarrow \mathop {\lim }\limits_{n \to + \infty } f({x_n}) = 2\)

LG 2

Chứng minh rằng với dãy số bất kì \({x_n},{\rm{ }}{x_n}\; \ne {\rm{ }}1\) và \({x_n}\; \to {\rm{ }}1\), ta luôn có \(\;f({x_n}) \to 2.\)

(Với tính chất thể hiện trong câu 2, ta nói hàm số \(\displaystyle f(x) = {{2{x^2} - 2x} \over {x - 1}}\) có giới hạn là 2 khi \(x\) dần tới 1).

Phương pháp giải:

Tính \(\lim f({x_n})\) dựa vào công thức có được ở phần 1a.

Lời giải chi tiết:

\(\lim f({x_n}) = \lim\,2{x_n} \) \(= 2\lim {x_n} = 2.1 = 2\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved