Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc (O), tiếp tuyến A của (O) cắt BC tại D. Gọi M là trung điểm của AD.
a. Chứng minh MC là tiếp tuyến của (O).
b. Chứng minh \(MO ⊥ AC\) tại trung điểm I của AC.
Phương pháp giải - Xem chi tiết
a.Sử dụng:
+Góc nội tiếp chắn nửa đường tròn bằng 90 độ
+Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền
b. Sử dụng
+Tính chất hai tiếp tuyến cắt nhau
+Đường trung trực của đoạn thẳng
Lời giải chi tiết
a. Ta có: \(\widehat {ACB} = 90^\circ \) (chắn nửa đường tròn)
\( \Rightarrow \widehat {ACD} = 90^\circ \) (kề bù)
∆ACD vuông có CM là đường trung tuyến
\( \Rightarrow CM = MA = {{AD} \over 2}\)
Do đó hai tam giác vuông MCO và MAO bằng nhau (c.c.c)
\( \Rightarrow \widehat {MCO} = \widehat {MAO} = 90^\circ \) hay MC là tiếp tuyến của (O)
b. Ta có: \(MA = MC\) (tính chất hai tiếp tuyến cắt nhau)
\(OA = OC (=R)\)
\(⇒ OM\) là đường trung trực của đoạn AC hay \(OM ⊥ AC.\)
Đề thi vào 10 môn Văn Quảng Ngãi
Bài 9
Bài 5: Tình hữu nghị giữa các dân tộc trên thế giới
Câu hỏi tự luyện Toán 9
CHƯƠNG I. ĐIỆN HỌC