PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 15 phút - Đề số 4 - Bài 6 - Chương 2 - Hình học 9

Đề bài

Cho đường tròn (O) đường kính AB. Lấy điểm C thuộc (O), tiếp tuyến A của (O) cắt BC tại D. Gọi M là trung điểm của AD.

a. Chứng minh MC là tiếp tuyến của (O).

b. Chứng minh \(MO ⊥ AC\) tại trung điểm I của AC.

Phương pháp giải - Xem chi tiết

a.Sử dụng:

+Góc nội tiếp chắn nửa đường tròn bằng 90 độ

+Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền

b. Sử dụng

+Tính chất hai tiếp tuyến cắt nhau

+Đường trung trực của đoạn thẳng

Lời giải chi tiết

 

a. Ta có: \(\widehat {ACB} = 90^\circ \) (chắn nửa đường tròn)

\( \Rightarrow \widehat {ACD} = 90^\circ \) (kề bù)

∆ACD vuông có CM là đường trung tuyến

\( \Rightarrow CM = MA = {{AD} \over 2}\)

Do đó hai tam giác vuông MCO và MAO bằng nhau (c.c.c)

\( \Rightarrow \widehat {MCO} = \widehat {MAO} = 90^\circ \) hay MC là tiếp tuyến của (O)

b. Ta có: \(MA = MC\) (tính chất hai tiếp tuyến cắt nhau)

\(OA = OC (=R)\)

\(⇒ OM\) là đường trung trực của đoạn AC hay \(OM ⊥ AC.\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved