Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
Đề bài
Bài 1. Tìm điều kiện có nghĩa của biểu thức :
a. \(A = {1 \over {\sqrt {x - 3} }}\)
b. \(B = \sqrt {x - 2} + {1 \over {x - 2}}\)
Bài 2. Chứng minh :
a. \(2\sqrt {2 + \sqrt 3 } = \sqrt 2 + \sqrt 6 \)
b. \(\sqrt {1 + {{\sqrt 3 } \over 2}} = {{1 + \sqrt 3 } \over 2}\)
Bài 3. Tính :
a. \(A = \sqrt 2 \left( {\sqrt {21} + 3} \right).\sqrt {5 - \sqrt {21} } \)
b. \(B = \sqrt 2 \left( {\sqrt 5 - 1} \right).\sqrt {3 + \sqrt 5 } \)
Bài 4. Cho biểu thức \(P = \left( {{1 \over {\sqrt x + 1}} - {1 \over {x + \sqrt x }}} \right):{{x - \sqrt x + 1} \over {x\sqrt x + 1}}\,\)\(\left( {x > 0} \right)\)
a. Rút gọn biểu thức P.
b. Tìm x sao cho \(P < 0\).
Bài 5. Tìm x, biết : \(\left( {3 - 2\sqrt x } \right)\left( {2 + 3\sqrt x } \right) = 16 - 6x\)
LG bài 1
LG bài 1
Phương pháp giải:
Sử dụng \(\sqrt A \) có nghĩa khi \(A\ge 0\)
Lời giải chi tiết:
a. A có nghĩa \( \Leftrightarrow \left\{ {\matrix{ {x - 3 \ne 0} \cr {x - 3 \ge 0} \cr } } \right. \Leftrightarrow x - 3 > 0 \Leftrightarrow x > 3\)
b. B có nghĩa \( \Leftrightarrow \left\{ {\matrix{ {x - 2 \ge 0} \cr {x - 2 \ne 0} \cr } } \right. \Leftrightarrow \left\{ {\matrix{ {x \ge 2} \cr {x \ne 2} \cr } } \right. \Leftrightarrow x > 2\)
LG bài 2
LG bài 2
Phương pháp giải:
Sử dụng \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
a. Ta có:
\(\eqalign{ & 2\sqrt {2 + \sqrt 3 } = \sqrt {4\left( {2 + \sqrt 3 } \right)} \cr & = \sqrt {8 + 4\sqrt 3 } = \sqrt {6 + 2\sqrt {12} + 2} \cr & = \sqrt {{{\left( {\sqrt 6 + \sqrt 2 } \right)}^2}} = \left| {\sqrt 6 + \sqrt 2 } \right| \cr & = \sqrt 2 + \sqrt 6 \,\,\left( {đpcm} \right) \cr} \)
b. Ta có:
\(\eqalign{ & \sqrt {1 + {{\sqrt 3 } \over 2}} = \sqrt {{{2 + \sqrt 3 } \over 2}} \cr & = \sqrt {{{4 + 2\sqrt 3 } \over 4}} = {{\sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} } \over {\sqrt 4 }} \cr & = {{1 + \sqrt 3 } \over 2}\,\,\left( {đpcm} \right) \cr} \)
LG bài 3
LG bài 3
Phương pháp giải:
Sử dụng \(\sqrt {{A^2}} = \left| A \right|\)
Lời giải chi tiết:
a. Ta có:
\(\eqalign{ A &= \left( {\sqrt {21} + 3} \right)\sqrt {10 - 2\sqrt {21} } \cr & = \sqrt 3 \left( {\sqrt 7 + \sqrt 3 } \right)\sqrt {{{\left( {\sqrt 7 - \sqrt 3 } \right)}^2}} \cr & = \sqrt 3 .\left( {\sqrt 7 + \sqrt 3 } \right)\left( {\sqrt 7 - \sqrt 3 } \right) \cr&= 4\sqrt 3 \cr} \)
b. Ta có:
\(\eqalign{ B& = \left( {\sqrt 5 - 1} \right)\sqrt {6 + 2\sqrt 5 } \cr & = \left( {\sqrt 5 - 1} \right)\sqrt {{{\left( {\sqrt 5 + 1} \right)}^2}} \cr & = \left( {\sqrt 5 - 1} \right)\left( {\sqrt 5 + 1} \right) \cr & = 5 - 1 = 4 \cr} \)
LG bài 4
LG bài 4
Phương pháp giải:
Quy đồng và rút gọn P.
Lời giải chi tiết:
a. Ta có:
\(\eqalign{ & P = \left[ {{1 \over {\sqrt x + 1}} - {1 \over {\sqrt x \left( {\sqrt x + 1} \right)}}} \right]:{{x - \sqrt x + 1} \over {{{\left( {\sqrt x } \right)}^3} + 1}}(x \ne 0)\cr & = {{\sqrt x - 1} \over {\sqrt x \left( {\sqrt x + 1} \right)}}:{{x - \sqrt x + 1} \over {\left( {\sqrt x + 1} \right)\left( {x - \sqrt x + 1} \right)}} \cr & = {{\sqrt x - 1} \over {\sqrt x \left( {\sqrt x + 1} \right)}}.\left( {\sqrt x + 1} \right) \cr&= {{\sqrt x - 1} \over {\sqrt x }} \cr} \)
b. Ta có: \(P < 0\) (điều kiện \(x > 0\))
\(\eqalign{ & \Leftrightarrow {{\sqrt x - 1} \over {\sqrt x }} < 0\cr& \Leftrightarrow \sqrt x - 1 < 0\,\,\,\left( {\text{Vì }\,\sqrt x > 0\,khi\,x > 0} \right) \cr & \Leftrightarrow \sqrt x < 1 \Leftrightarrow 0 < x < 1 \cr} \)
LG bài 5
LG bài 5
Phương pháp giải:
Đưa về dạng:
\(\begin{array}{l}
\sqrt {f\left( x \right)} = a\left( {a \ge 0} \right)\\
\Leftrightarrow f\left( x \right) = {a^2}
\end{array}\)
Lời giải chi tiết:
Điều kiện : \(x ≥ 0\).
Ta có:
\(\eqalign{ & \left( {3 - 2\sqrt x } \right)\left( {2 + 3\sqrt x } \right) = 16 - 6x \cr & \Leftrightarrow 6 + 9\sqrt x - 4\sqrt x - 6x = 16 - 6x \cr & \Leftrightarrow 5\sqrt x = 10 \cr & \Leftrightarrow \sqrt x = 2 \cr} \)
\(\;\;⇔ x = 4\) (thỏa mãn điều kiện)
Vậy \(x=4\).
Đề kiểm tra giữa kì I
Đề thi vào 10 môn Văn Vĩnh Long
QUYỂN 5. SỬA CHỮA XE ĐẠP
Đề cương ôn tập học kì 2
Đề thi vào 10 môn Toán Thái Bình