PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Đề kiểm tra 45 phút (1 tiết ) - Đề số 2 - Chương 2 - Hình học 8

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3

Đề bài

Bài 1. Tính đường cao của tam giác vuông biết hai cạnh góc vuông là 6 cm và 8 cm.

Bài 2. Cho tứ giác ABCD. Gọi M là trung điểm của AB, N là trung điểm của CD.

Chứng minh rằng: \({S_{MBN{\rm{D}}}} = {1 \over 2}{S_{ABCD}}.\)

Bài 3. Cho hình bình hành ABCD có I, J lần lượt là trung điểm của AB và CD.

a) Chứng minh AICJ là hình bình hành.

b) Biết diện tích hình bình hành ABCD bằng \(48c{m^2}\) . Tính diện tích AICJ.

c) Gọi E, F lần lượt là giao điểm của AJ, CJ với BD.

 Chứng minh rằng BD = 3DE.

LG bài 1

Phương pháp giải:

Sử dụng định lý Py-ta-go

và \({S_{ABC}} = {1 \over 2}BC.AH = {1 \over 2}AB.AC\)

Lời giải chi tiết:

Ta có: \(B{C^2} = A{B^2} + A{C^2}\)

                     \( = {6^2} + {8^2}\) (định lý Py – ta – go)

\( \Rightarrow BC = \sqrt {36 + 64}  = \sqrt {100}  = 10\left( {cm} \right)\)

\({S_{ABC}} = {1 \over 2}BC.AH = {1 \over 2}AB.AC\)

\( \Rightarrow BC.AH = AB.AC\)

\(\Rightarrow AH = \dfrac{AB.AC}{10} = 6,8\left( {cm} \right)\)

 

LG bài 2

Phương pháp giải:

Nối B với D, chứng minh các tam giác có đáy bằng nhau và chung chiều cao nên diện tích bằng nhau 

Lời giải chi tiết:

Nối đường chéo BD, \(\Delta BCD\) có BN là trung tuyến nên \({S_1} = {S_2}\) (đáy bằng nhau, chung đường cao)

Tương tự: \({S_3} = {S_4}\)

\( \Rightarrow {S_2} + {S_3} = {S_1} + {S_4} = {1 \over 2}{S_{ABCD}}.\)

Hay \({S_{MBND}} = {1 \over 2}{S_{ABCD}}.\)

LG bài 3

Phương pháp giải:

Sử dụng:

a.Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành

b. Nối đường chéo AC và chỉ ra các tam giác có diện tích bằng nhau

c.Đường trung bình của tam giác

Lời giải chi tiết:

a) Ta có: \(AB// CJ\) và AI = CJ nên AICJ là hình bình hành. 

b) Ta nối đường chéo AC ta có:

\({S_{ADJ}} = {S_{ACJ}} = {S_{ACI}} = {S_{BCI}}\) do đó

\({S_{ACJ}} + {S_{ACI}} = {S_{ADJ}} + {S_{BCI}} = {1 \over 2}{S_{ABCD}}\)

Hay \({S_{AICJ}} = {1 \over 2}{S_{ABCD}} = 24c{m^2}\).

c) Ta có \(IF//AE\) và I là trung điểm của AB (gt) nên IF là đường trung bình của \(\Delta ABE\) nên F là trung điểm của EB hay FE = FB.

Tương tự ta có E là trung điểm của DF nên FD = EF.

Vậy DE = EF = FB hay BD = 3DE.

Chú ý: Các bạn có thể giải câu c) bài 3 bằng cách khác: ta có E, F là trọng tâm các tam giác ACD và ABC.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved