PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Đề kiểm tra 45 phút - Đề số 5 - Chương 1 - Hình học 9

Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Đề bài
LG bài 1
LG bài 2
LG bài 3

Đề bài

Đề bài

Bài 1. Tính :

a. \(\left( {\cos 36^\circ  - \sin 36^\circ } \right).\left( {\cos 37^\circ  - \sin 38^\circ } \right).\left( {\cos 42^\circ  - \sin 48^\circ } \right)\)

b. \(\left( {\tan 52^\circ  + \cot 43^\circ } \right).\left( {\tan 29^\circ  - \cot 61^\circ } \right).\left( {\tan 13^\circ  - \tan 24^\circ } \right)\)

Bài 2. Cho tam giác ABC vuông tại A có \(AB = 6cm, BC = 10cm\), đường cao AH. Gọi E, F là hình chiếu của H lần lượt lên AB, AC. 

a. Tính EF

b. Chứng minh rằng : \(AE.AB = AF.AC\) 

c. Tính : \(A = {\sin ^2}B + {\sin ^2}C - \tan B.\tan C\)

Bài 3. Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC, vẽ EF vuông góc với BC.

a. Chứng minh rằng : \(AF = BE.\cos C\).

b. Cho \(BC = 20cm; \sin C = 0,6\). Tính \({S_{AEFB}}\)

LG bài 1

LG bài 1

Phương pháp giải:

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia

 

Lời giải chi tiết:

a. Ta có: \(\cos 42^\circ  = \sin 48^\circ \) (vì là hai góc phụ nhau)

\(⇒ \cos42^o - \sin48^o = 0\) 

Do đó: \(\left( {\cos 36^\circ  - \sin 36^\circ } \right).\left( {\cos 37^\circ  - \sin 38^\circ } \right).\left( {\cos 42^\circ  - \sin 48^\circ } \right) = 0\)

b. Ta có: \(\tan 29^\circ  = \cot 61^\circ  \)\(\;\Rightarrow \tan 29^\circ  - \cot 61^\circ  = 0\)

Do đó: \(\left( {\tan 52^\circ  + \cot 43^\circ } \right).\left( {\tan 29^\circ  - \cot 61^\circ } \right).\left( {\tan 13^\circ  - \tan 24^\circ } \right) = 0\)

LG bài 2

LG bài 2

Phương pháp giải:

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\). Khi đó ta có các hệ thức sau: 

+) \(A{B^2} = BH.BC\) và \(A{C^2} = CH.BC\) 

+) \(H{A^2} = HB.HC\)

+) \(AB.AC = BC.AH\) 

+) \(B{C^2} = A{B^2} + A{C^2}\) (Định lí Pitago). 

+) \(\sin B = \dfrac{{AC}}{{BC}};\cos B = \dfrac{{AB}}{{BC}}\)

Lời giải chi tiết:

a. Ta có: \(∆ABC\) vuông tại A:

\(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{10}^2} - {6^2}}  = 8\,\left( {cm} \right)\)

Lại có AH là đường cao của tam giác vuông ABC nên:

\(AH.BC = AB.AC\) (định lí 3)

\( \Rightarrow AH = {{AB.AC} \over {BC}} = {{6.8} \over {10}} = 4,8\,\left( {cm} \right)\)

Lại có tứ giác AFHE là hình chữ nhật (vì có ba góc vuông) nên \(EF = AH = 4,8 \;(cm)\)

b. Xét tam giác vuông AHB có đường cao HE, ta có:

\(A{H^2} = AE.AB\) (định lí 1)   (1)

Xét tam giác vuông AHC có đường cao HF, ta có:

\(A{H^2} = AF.AC\) (2)

Từ (1) và (2) suy ra: \(AE.AB = AF.AC\)

c. Ta có:

\(\eqalign{  & \sin B = {{AC} \over {BC}} \Rightarrow {\sin ^2}B = {{A{C^2}} \over {B{C^2}}}  \cr  & \sin C = {{AB} \over {BC}} \Rightarrow {\sin ^2}C = {{A{B^2}} \over {B{C^2}}}  \cr  & \tan B = {{AC} \over {AB}} \Rightarrow \tan C = {{AB} \over {AC}} \cr} \)

Vậy \(\eqalign{   A &= {\sin ^2}B + {\sin ^2}C - \tan B.\tan C  \cr  &  = {{A{C^2}} \over {B{C^2}}} + {{A{B^2}} \over {B{C^2}}} - {{AC} \over {AB}}.{{AB} \over {AC}} \cr&= {{A{C^2} + A{B^2}} \over {B{C^2}}} - 1 \cr} \)

\(\;\;\;\;\; = {{B{C^2}} \over {B{C^2}}} - 1\) (định lí Pi-ta-go)

\(\;\;\;\;\;=1 – 1 = 0\)

LG bài 3

LG bài 3

Phương pháp giải:

Sử dụng tính chất tam giác đồng dạng và định lý Pytago

Lời giải chi tiết:

a. Ta có: ∆BAC đồng dạng ∆EFC (g.g) \( \Rightarrow {{AC} \over {BC}} = {{FC} \over {EC}}\) (1)

Xét ∆AFC và ∆BEC có \(\widehat C\) chung và (1) 

Do đó ∆AFC đồng dạng ∆BEC (c.g.c)

\(\eqalign{  &  \Rightarrow {{AF} \over {BE}} = {{AC} \over {BC}} = \cos C  \cr  &  \Rightarrow AF = BE.\cos C\,\left( {dpcm} \right) \cr} \)

b. Ta có: \({S_{AEFB}} = {S_{ABC}} - {S_{EFC}}\)

Ta có: \(\sin C = 0,6 \Rightarrow \widehat C \approx 36^\circ 52'\)

∆ABC vuông tại A nên \(AB = BC.sinC = 20.0,6 = 12\; (cm)\)

Tương tự: \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{20}^2} - {{12}^2}}  = 16\,\left( {cm} \right)\)

Do đó: \({S_{ABC}} = {1 \over 2}AB.AC = {1 \over 2}12.16 = 96\,\left( {c{m^2}} \right)\)

∆BAC và ∆EFC đồng dạng (cmt), ta có:

\(\eqalign{  & {{{S_{EFC}}} \over {{S_{BAC}}}} = {\left( {{{EC} \over {BC}}} \right)^2} = {\left( {{8 \over {20}}} \right)^2} = {{64} \over {400}}  \cr  &  \Rightarrow {S_{EFC}} = {{{S_{ABC}}.64} \over {400}} = {{96.64} \over {400}} \approx 15,36\,\left( {c{m^2}} \right)  \cr  & \text{Vậy }\,{S_{AEFB}} = 96 - 15,36 = 80,64\,\left( {c{m^2}} \right) \cr} \)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved