PHẦN ĐẠI SỐ - SBT TOÁN 9 TẬP 1

Bài 103 trang 22 SBT toán 9 tập 1

Đề bài

Chứng minh:

\(x - \sqrt x  + 1 = {\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\) với \(x > 0\)

Từ đó, cho biết biểu thức \(\dfrac{1}{{x - \sqrt x  + 1}}\) có giá trị lớn nhất là bao nhiêu ?

Giá trị đó đạt được khi \(x\) bằng bao nhiêu?  

Phương pháp giải - Xem chi tiết

Sử dụng hằng đẳng thức \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

Sau đó biện luận để tìm giá trị lớn nhất. 

Lời giải chi tiết

Ta có: \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\)\( = x -2.\dfrac{1}{2}. \sqrt x  + {\dfrac{1}{4}} + {\dfrac{3}{4}} \)\(= x - \sqrt x  + 1\) 

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Ta có: \({\dfrac{1}{x - \sqrt x  + 1}} = {\dfrac{1}{{{\left( {\sqrt x  - {\dfrac{1}{2}}} \right)}^2} + {\dfrac{3}{4}}}}\) có giá trị lớn nhất khi và chỉ khi \({\left( {\sqrt x  - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4}\)  nhỏ nhất.

Vì \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} \ge 0\) nên \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}} \ge \dfrac{3}{4}\)

Suy ra \({\left( {\sqrt x  - {\dfrac{1}{2}}} \right)^2} + {\dfrac{3}{4}}\) nhỏ nhất bằng \({\dfrac{3}{4}}\) khi và chỉ khi \(\sqrt x  - {\dfrac{1}{2}} = 0 \Leftrightarrow \sqrt x  = {\dfrac{1}{2}} \)\(\Leftrightarrow x = {\dfrac{1}{4}}\) (thỏa mãn \(x>0\))

Khi đó: \({\dfrac{1}{x - \sqrt x  + 1}} = \dfrac{1}{{\dfrac{3}{4}}} =\ {\dfrac{4 }{3}}\)

Vậy \({\dfrac{1}{x - \sqrt x  + 1}}\) có giá trị lớn nhất bằng \(\dfrac{4 }{3}\) khi \(x = {\dfrac{1 }{4}}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved