PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

Bài 110 trang 93 SBT toán 8 tập 1

Đề bài

Chứng minh rằng các tia phân giác các góc của một hình bình hành cắt nhau tao thành một hình chữ nhật.

Phương pháp giải - Xem chi tiết

Sử dụng: Tổng ba góc trong tam giác bằng \(180^0\)

Lời giải chi tiết

 

Giả sử ABCD là hình bình hành.

Gọi \(G,\, H,\, E, \,K\) lần lượt là giao điểm của các đường phân giác của \(\widehat A\) và \(\widehat B\); \(\widehat B\) và \(\widehat C\); \(\widehat C\) và \(\widehat D\); \(\widehat D\) và \(\widehat A\).

Ta có: \(\widehat {ADF} = \eqalign{1 \over 2}\widehat {ADC}\) (tính chất tia phân giác)

             \(\widehat {DAF} =\eqalign {1 \over 2}\widehat {DAB}\) (tính chất tia phân giác)

            \(\widehat {ADC} + \widehat {DAB} = {180^0}\) (hai góc trong cùng phía)

Suy ra: \(\widehat {ADF} + \widehat {DAF} = \eqalign{1 \over 2}\left( {\widehat {ADC} + \widehat {DAB}} \right)\) \(=\eqalign {1 \over 2}{.180^0} = {90^0}\)

Trong \(∆ AFD\) ta có: 

\(\widehat {AFD} = {180^0} - \left( {\widehat {ADF} + \widehat {DAF}} \right) \) \(= {180^0} - {90^0} = {90^0}\)

\(\widehat {EFG} = \widehat {AFD}\) (đối đỉnh)

\(\eqalign{  &  \Rightarrow \widehat {EFG} = {90^0}  \cr  & \widehat {GAB} = \eqalign{1 \over 2}\widehat {DAB}(gt)  \cr  & \widehat {GBA} = {1 \over 2}\widehat {CBA}(gt) \cr} \)

\(\widehat {DAB} + \widehat {CBA} = {180^0}\) (hai góc trong cùng phía)

\( \Rightarrow \widehat {GBA} + \widehat {GAB}\) \(= \eqalign{1 \over 2}\left( {\widehat {DAB} + \widehat {CBA}} \right)\) \(= \eqalign{1 \over 2}{.180^0} = {90^0}\)

Trong \(∆ AGB\) ta có: \(\widehat {AGB} = {180^0} - \left( {\widehat {GAB} + \widehat {GBA}} \right) \) \(= {180^0} - {90^0} = {90^0}\)

hay \(\widehat G = {90^0}\)

\(\eqalign{  & \widehat {EDC} = \eqalign{1 \over 2}\widehat {ADC}(gt)  \cr  & \widehat {ECD} =\eqalign {1 \over 2}\widehat {BCD}(gt) \cr} \)

\(\widehat {ADC} + \widehat {BCD} = {180^0}\) (hai góc trong cùng phía)

 

\( \Rightarrow \widehat {EDC} + \widehat {ECD} \) \(= \eqalign{1 \over 2}\left( {\widehat {ADC} + \widehat {BCD}} \right) \) \(= \eqalign{1 \over 2}{.180^0} = {90^0}\)

Trong \(∆ EDC\) ta có: \(\widehat {DEC} = {180^0} - \left( {\widehat {EDC} + \widehat {ECD}} \right)\) \(= {180^0} - {90^0} = {90^0}\) hay \(\widehat E = {90^0}\)

Vậy tứ giác EFGH là hình chữ nhật (vì có ba góc vuông).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved