Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh bên trong đường tròn. Góc có đỉnh bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp - Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, quạt tròn
Ôn tập chương III. Góc với đường tròn
Đề bài
Trên đường tròn \((O)\) đường kính \(AB\), lấy điểm \(M\) (khác \(A\) và \(B\)). vẽ tiếp tuyến của \((O)\) tại \(A\). Đừờng thẳng \(BM\) cắt tiếp tuyến đó tại \(C\). Chứng minh rằng ta luôn có \(M{A^2} = {\rm{ }}MB.MC\)
Phương pháp giải - Xem chi tiết
+ Sử dụng góc nội tiếp chắn nửa đường tròn là góc vuông.
+ Chứng minh \(\Delta {\rm M}{\rm A}{\rm B}\) đồng dạng với \(\Delta MCA\) từ đó suy ra tỉ lệ cạnh để có đẳng thức cần chứng minh.
Lời giải chi tiết
Nối \(AM\)
Xét \(\Delta AMB\) và \(\Delta AMC.\)
Ta có \(\widehat M = 90^\circ \) vì góc nội tiếp chắn nửa đường tròn
Và \(\widehat {MAC} = \widehat {MBA}\) vì \(\widehat {MBA} + \widehat {MAB} = 90^\circ \) (vì tam giác \(MAB\) vuông tại \(M\) ) và \(\widehat {MAB} + \widehat {MAC} = 90^\circ \) (do \(\widehat {BAC} = 90^\circ \))
Hai tam giác vuông có góc nhọn bằng nhau \( \Rightarrow \) \(\Delta MAB\) \( \backsim \) \(\Delta MCA\) nên ta có :
\(\dfrac{{MA}}{{MC}} = \dfrac{{MB}}{{MA}} \Rightarrow M{A^2} = MB.MC\)
Đề thi vào 10 môn Văn Bắc Ninh
Đề thi vào 10 môn Toán Đăk Nông
Chương 2. Kim loại
CHƯƠNG 5. DẪN XUẤT CỦA HIĐROCACBON. POLIME
Đề thi học kì 1 mới nhất có lời giải