Bài 1.54 trang 23 SBT hình học 12

Đề bài

Cho hình lăng trụ ABC.A′B′C′ có đáy là tam giác đều cạnh bằng a, hình chiếu vuông góc của A′ lên đáy (ABC) trùng với trọng tâm của tam giác ABC và cạnh bên tạo với đáy một góc 600. Thể tích của hình lăng trụ là:

A. 312a3                      B. 38a3

C. 34a3                      D. 32a3

Phương pháp giải - Xem chi tiết

- Xác định góc giữa cạnh bên và đáy (bằng góc giữa cạnh bên với hình chiếu của nó trên đáy).

- Tính diện tích tam giác đáy và chiều cao.

- Tính thể tích theo công thức V=Bh.

Lời giải chi tiết

 

 

 

Gọi M là trung điểm của BC và G là trọng tâm tam giác ABC.

Khi đó A′G⊥(ABC) và góc giữa A′A và (ABC) là AAG^=600.

Tam giác ABC đều cạnh a nên SABC=a234 và AG=23AM=23.a32=a33.

Tam giác AAG vuông tại G có AG=a33 và AAG^=600 nên AG=AGtan600=a.

Vậy thể tích VABC.ABC=SABC.AG=a234.a=a334.

Chọn C.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved