Đề bài
Nghiệm dương nhỏ nhất của phương trình \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\) là
A. \(\dfrac{\pi}{6}\) B. \(\dfrac{\pi}{3}\)
C. \(\dfrac{\pi}{4}\) D. \(\dfrac{\pi}{5}\).
Phương pháp giải - Xem chi tiết
Tìm ĐKXĐ cho phương trình, ĐKXĐ của hàm số \(y=\dfrac{f(x)}{g(x)}\) là \(g(x)\ne 0\).
Giải phương trình bằng cách sử dụng công thức \(\cot x=\dfrac{1}{\tan x}\), quy đồng và đưa phương trình về dạng phương trình bậc hai đối với hàm lượng giác \(\tan x\).
Phương trình \(\tan x=\tan\alpha\) có nghiệm là \(x=\alpha+k\pi ,k\in\mathbb{Z}\).
Lời giải chi tiết
ĐKXĐ: \(\cos x\ne 0\) và \(\sin x\ne 0\).
Ta có: \(\sqrt{3}\tan x+\sqrt{3}\cot x-4=0\)
\(\Leftrightarrow \sqrt{3}\tan x+\sqrt{3}\dfrac{1}{\tan x}-4=0\)
\(\Leftrightarrow \sqrt{3}{\tan}^2 x+\sqrt{3}-4\tan x=0\)
\( \Leftrightarrow \left[ \begin{array}{l}\tan x=\sqrt{3} \text{(thỏa mãn)}\\\tan x=\dfrac{1}{\sqrt{3}}\text{(thỏa mãn)}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x=\dfrac{\pi}{3}+k\pi,k\in\mathbb{Z} \\ x=\dfrac{\pi}{6}+k\pi,k\in\mathbb{Z}\end{array} \right.\)
Với \( x=\dfrac{\pi}{3}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{3}\) tại \(k=0\)
Với \( x=\dfrac{\pi}{6}+k\pi \) nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\) tại \(k=0\)
Vì \(\dfrac{\pi}{6}<\dfrac{\pi}{3}\) nên nghiệm dương nhỏ nhất là \(\dfrac{\pi}{6}\)
Đáp án: A.
Cách trắc nghiệm:
Xét các giá trị từ nhỏ tới lớn trong các phương án.
Nhỏ nhất là giá trị π/6. Khi đó, tanπ/6 = 1/√3, cotπ/6 = √3, thay vào phương trình thấy thỏa mãn.
Vậy π/6 là nghiệm dương nhỏ nhất của phương trình.
Chương I. Dao động
Chương 5: Dẫn xuất halogen - Ancohol - Phenol
Chủ đề 5. Hoạt động phát triển cộng đồng
Chủ đề 1. Dao động
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11