1. Nội dung câu hỏi
Cho đường thẳng d cố định, xét phép biến hình f biến điểm M thuộc d thành chính nó và biến điểm M không thuộc d thành điểm M’ sao cho d là trung trực của đoạn MM’. Hãy chứng minh f là một phép dời hình.
2. Phương pháp giải
Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì.
3. Lời giải chi tiết
• Phép biến hình f biến 1 điểm thuộc d thành chính nó, do đó khoảng cách giữa hai điểm bất kì thuộc d qua phép biến hình f được bảo toàn (1)
• Lấy hai điểm M, N bất kì không thuộc d.
Ta có \(M'{\rm{ }} = {\rm{ }}f\left( M \right)\;,\,N'{\rm{ }} = {\rm{ }}f\left( N \right).\)
Gọi H, K lần lượt là trung điểm của MM’ và NN’.
Suy ra \(\overrightarrow {MH} + \overrightarrow {{\rm{M'H}}} = \vec 0;\,\,\overrightarrow {KN} + \overrightarrow {KN'} = \vec 0\)
Ta có:
\(\begin{array}{l}\overrightarrow {MN} + \overrightarrow {{\rm{M'N'}}} = \left( {\overrightarrow {MH} + \overrightarrow {HK} + \overrightarrow {KN} } \right) + \left( {\overrightarrow {{\rm{M'H}}} + \overrightarrow {HK} + \overrightarrow {KN'} } \right)\\ = \left( {\overrightarrow {MH} + \overrightarrow {{\rm{M'H}}} } \right) + \left( {\overrightarrow {KN} + \overrightarrow {KN'} } \right) + 2\overrightarrow {HK} \end{array}\)
\( = \vec 0 + \vec 0 + 2\overrightarrow {HK} \) (do H, K lần lượt là trung điểm của MM’, NN’)
\( = 2\overrightarrow {HK} \)
\(\begin{array}{l}\overrightarrow {MN} - \overrightarrow {{\rm{M'N'}}} = \left( {\overrightarrow {HN} - \overrightarrow {HM} } \right) - \left( {\overrightarrow {HN'} - \overrightarrow {HM'} } \right)\\ = \overrightarrow {HN} - \overrightarrow {HM} - \overrightarrow {HN'} + \overrightarrow {HM'} = \left( {\overrightarrow {HN} - \overrightarrow {HN'} } \right) + \left( {\overrightarrow {HM'} - \overrightarrow {HM} } \right) = \overrightarrow {{\rm{N'N}}} + \overrightarrow {MM'} \end{array}\)
Khi đó
\(\begin{array}{l}{\overrightarrow {MN} ^2} - {\overrightarrow {{\rm{M'N'}}} ^2} = \left( {\overrightarrow {MN} + \overrightarrow {{\rm{M'N'}}} } \right)\left( {\overrightarrow {MN} - \overrightarrow {{\rm{M'N'}}} } \right)\\ = 2\overrightarrow {HK} \left( {\overrightarrow {{\rm{N'N}}} + \overrightarrow {MM'} } \right)\\ = 2\overrightarrow {HK} .\overrightarrow {{\rm{N'N}}} + 2\overrightarrow {HK} .\overrightarrow {MM'} = 2.0 + 2.0 = 0\end{array}\)
(do d là đường trung trực của MM’, NN’ nên \(\overrightarrow {MM'} \bot \overrightarrow {HK} ;\,\,\overrightarrow {NN'} \bot \overrightarrow {HK} \))
Suy ra \({\overrightarrow {MN} ^2} = {\overrightarrow {{\rm{M'N'}}} ^2}\)
Do đó \(MN{\rm{ }} = {\rm{ }}M'N'{\rm{ }}\left( 2 \right)\)
Từ (1) và (2) suy ra phép biến hình f bảo toàn khoảng cách giữa hai điểm bất kì.
Vậy f là một phép dời hình.
CHƯƠNG VII: MẮT VÀ CÁC DỤNG CỤ QUANG
Chủ đề 5: Dẫn xuất halogen - Alcohol - Phenol
1. Bài 1: Kĩ thuật đá móc cầu bằng mu bàn chân (cúp ngược)
Chương 6. Hợp chất carbonyl (Aldehyde - Ketone - Carboxylic acid
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương I - Hóa học 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11