1. Nội dung câu hỏi
Giải các phương trình sau:
a) \({\log _3}\left( {2x - 1} \right) = 3\);
b) \({\log _{49}}x = 0,25\);
c) \({\log _2}\left( {3x + 1} \right) = {\log _2}\left( {2x - 4} \right)\);
d) \({\log _5}\left( {x - 1} \right) + {\log _5}\left( {x - 3} \right) = {\log _5}\left( {2x + 10} \right)\);
e) \(\log x + \log \left( {x - 3} \right) = 1\);
g) \({\log _2}\left( {{{\log }_{81}}x} \right) = - 2\).
2. Phương pháp giải
Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:
\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)
Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).
Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))
3. Lời giải chi tiết
a) Điều kiện: \(2x - 1 > 0 \) \( \Leftrightarrow x > \frac{1}{2}\)
\({\log _3}\left( {2x - 1} \right) = 3 \) \( \Leftrightarrow 2x - 1 = {3^3} \) \( \Leftrightarrow 2x = 28 \) \( \Leftrightarrow x = 14\left( {tm} \right)\)
Vậy phương trình có nghiệm là \(x = 14\)
b) Điều kiện: \(x > 0\)
\({\log _{49}}x = 0,25 \) \( \Leftrightarrow x = {49^{0,25}} = {7^{0,5}} = \sqrt 7 \left( {tm} \right)\)
Vậy phương trình có nghiệm là \(x = \sqrt 7 \)
c) Điều kiện: \(x > 2\)
\({\log _2}\left( {3x + 1} \right) = {\log _2}\left( {2x - 4} \right) \) \( \Leftrightarrow 3x + 1 = 2x - 4 \) \( \Leftrightarrow x = - 5\left( L \right)\)
Vậy phương trình đã cho vô nghiệm.
d) Điều kiện: \(x > 3\)
\({\log _5}\left( {x - 1} \right) + {\log _5}\left( {x - 3} \right) = {\log _5}\left( {2x + 10} \right) \) \( \Leftrightarrow {\log _5}\left( {x - 1} \right)\left( {x - 3} \right) = {\log _5}\left( {2x + 10} \right)\)
\( \) \( \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 2x + 10 \) \( \Leftrightarrow {x^2} - 4x + 3 = 2x + 10 \) \( \Leftrightarrow {x^2} - 6x - 7 = 0\)
\( \) \( \Leftrightarrow \left( {x + 1} \right)\left( {x - 7} \right) = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x + 1 = 0\\x - 7 = 0\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}x = - 1\left( L \right)\\x = 7\left( {tm} \right)\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = 7\)
e) Điều kiện: \(x > 3\)
\(\log x + \log \left( {x - 3} \right) = 1 \) \( \Leftrightarrow \log x\left( {x - 3} \right) = \log 10 \) \( \Leftrightarrow {x^2} - 3x = 10\)
\( \) \( \Leftrightarrow \left( {x - 5} \right)\left( {x + 2} \right) = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x - 5 = 0\\x + 2 = 0\end{array} \right. \) \( \Leftrightarrow \left[ \begin{array}{l}x = 5\left( {TM} \right)\\x = - 2\left( L \right)\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = 5\)
g) Điều kiện: \(x > 0\).
\({\log _2}\left( {{{\log }_{81}}x} \right) = - 2 \) \( \Leftrightarrow {\log _{81}}x = {2^{ - 2}} = \frac{1}{4} \) \( \Leftrightarrow x = {81^{\frac{1}{4}}} = 3\left( {tm} \right)\)
Vậy phương trình có nghiệm là \(x = 3\).
CHƯƠNG IV. SINH SẢN - SINH HỌC 11
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương IX - Hóa học 11
Bài 8: Hợp chất hữu cơ và hóa học hữu cơ
Một số tác giả, tác phẩm văn học tham khảo - Ngữ văn 11
Unit 11: Careers
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11