HÌNH HỌC SBT - TOÁN 11

Bài 2.19 trang 71 SBT hình học 11

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho hình chóp \(S.ABCD\) có đáy là hình thang \(ABCD\), đáy lớn là \(AD\) và \(AD = 2BC\). Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(G\) là trọng tâm của tam giác \(SCD\).

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

Chứng minh rằng \(OG\parallel \left( {SBC} \right)\).

Phương pháp giải:

Sử dụng định lý Talet.

Sử dụng tính chất của trọng tâm.

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song \((\alpha)\).

Lời giải chi tiết:

Tứ giác \(ABCD\) là hình thang có \(AD\parallel =2BC\).

Theo định lý Talet \(\dfrac{OD}{OB}=\dfrac{OA}{OC}=\dfrac{AD}{BC}=2\)

\(\Rightarrow \dfrac{OD}{BD}=\dfrac{OD}{OB+OD}\) \(=\dfrac{2}{1+2}=\dfrac{2}{3}\text{(1)}\).

Gọi \(H\) là trung điểm của \(SC\), tam giác \(SCD\) có \(G\) là trọng tâm nên \(\dfrac{DG}{DH}=\dfrac{2}{3}\text{(2)}\).

Từ \(\text{(1)}\) và \(\text{(2)}\) suy ra \(\dfrac{DO}{DB}=\dfrac{DG}{DH}=\dfrac{2}{3}\)

Theo định lý Talet \(OG\parallel BH\text{(*)}\).

Mà \(H\in SC\Rightarrow H\in (SBC)\)

\(\Rightarrow BH\subset (SBC)\text{(**)}\)

Từ \(\text{(*)}\) và \(\text{(**)}\) suy ra \( OG\parallel (SBC)\).

LG b

Cho \(M\) là trung điểm của \(SD\). Chứng minh rằng \(CM\parallel \left( {SAB} \right)\).

Phương pháp giải:

Sử dụng tính chất đường trung bình trong tam giác.

Sử dụng tính chất hình bình hành.

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song \((\alpha)\).

Lời giải chi tiết:

Gọi \(M’\) là trung điểm của \(SA\) và ta có \(M\) là trung điểm \(SD\) nên trong tam giác \(SAD\) khi đó \(MM’\) là đường trung bình.

\(\Rightarrow MM’\parallel =\dfrac{1}{2}AD\)

Mà hình thang \(ABCD\) có \(BC\parallel =\dfrac{1}{2}AD\)

Suy ra \(MM’\parallel =BC\) \(\Rightarrow\) tứ giác \(MM’BC\) là hình bình hành.

\(\Rightarrow MC\parallel M’B\)

Ta lại có \(M’B\subset (SAB)\)

\(\Rightarrow MC\parallel (SAB)\).

LG c

Giả sử điểm \(I\) nằm trong đoạn \(SC\) sao cho \(S{\rm{C = }}\dfrac{3 }{2}SI\). Chứng minh rằng \(SA\parallel \left( {BI{\rm{D}}} \right)\). 

Phương pháp giải:

Sử dụng định lý Talet.

Sử dụng tính chất: Nếu đường thẳng \(d\) không nằm trong mặt phẳng \((\alpha)\) và \(d\) song song với đường thẳng \(d’\) nằm trong \((\alpha)\) thì \(d\) song song \((\alpha)\).

Lời giải chi tiết:

Ta có: \(SC=\dfrac{3}{2}SI\) \(\Rightarrow \dfrac{CI}{CS}=\dfrac{1}{3}\).

Mà \(\dfrac{OC}{OA}=\dfrac{BC}{AD}=\dfrac{1}{2}\) nên \(\dfrac{CO}{CA}=\dfrac{1}{3}\).

Suy ra \(\dfrac{CI}{CS}=\dfrac{CO}{CA}=\dfrac{1}{3}\)

Theo định lý Talet ta được \(IO\parallel SA\) mà \(IO\subset (BID)\)

\(\Rightarrow SA\parallel (BID)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved